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Abstract

Predictive multiplicity occurs when classification models with statistically indistin-
guishable performances assign conflicting predictions to individual samples. When
used for decision-making in applications of consequence (e.g., lending, education,
criminal justice), models developed without regard for predictive multiplicity may
result in unjustified and arbitrary decisions for specific individuals. We introduce a
new metric, called Rashomon Capacity, to measure predictive multiplicity in prob-
abilistic classification. Prior metrics for predictive multiplicity focus on classifiers
that output thresholded (i.e., 0-1) predicted classes. In contrast, Rashomon Capacity
applies to probabilistic classifiers, capturing more nuanced score variations for in-
dividual samples. We provide a rigorous derivation for Rashomon Capacity, argue
its intuitive appeal, and demonstrate how to estimate it in practice. We show that
Rashomon Capacity yields principled strategies for disclosing conflicting models
to stakeholders. Our numerical experiments illustrate how Rashomon Capacity
captures predictive multiplicity in various datasets and learning models, including
neural networks. The tools introduced in this paper can help data scientists measure
and report predictive multiplicity prior to model deployment.

1 Introduction

Rashomon effect, introduced by Breiman [1], describes the phenomenon where a multitude of distinct

predictive models achieve similar training or test loss. Breiman reported observing the Rashomon

. { effect in several model classes, including linear regression, decision trees, and small neural networks.

2" In a foresighted experiment, Breiman noted that, when retraining a neural network 100 times on

three-dimensional data with different random initializations, he “found 32 distinct minima, each of

which gave a different picture, and having about equal test set error” [1, Section 8]. The set of
almost-equally performing models for a given learning problem is called the Rashomon set [2,3].

H S I a n g H S u Fl aV I O P . C al m O n We focus on a facet of the Rashomon effect in classification problems called predictive multiplicity.

Predictive multiplicity occurs when competing models in the Rashomon set assign conflicting
predictions to individual samples [4]. Fig. | presents an updated version of Breiman’s neural network
experiment and illustrates predictive multiplicity in three classification tasks with different data
' . H ' . H domains and neural network architectures. Here, models that achieve statistically-indistinguishable
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) multiplicity is not accounted for, the output for this sample may ultimately depend on arbitrary
choices made during training (e.g., parameter initialization).

h S i a n g h S U @ g . h a rvard . e d u ) fl aV i O@ S e aS . h a rva r d . e d U Predictive multiplicity captures the potential individual-level harm introduced by an arbitrary choice

of a single model in the Rashomon set. When such a model is used to support automated decision-
making in sectors dominated by a few cc ies or Governr labeled Algorithmic Leviathans
in [5, Section 3]—predictive multiplicity can lead to unjustified and systemic exclusion of individuals
from critical opportunities. For example, an algorithm used for lending may deny a loan to a specific
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Predictive Multiplicity occurs in many classification tasks
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Societal Impacts of Predictive Multiplicity

« |If predictive multiplicity is not accounted for, decisions supported by ML models may depend
on arbitrary and unjustified choices (e.g., model initialization).

« In sectors dominated by a few algorithms (algorithmic leviathans [Creel&Hellman’21] used in
credit scoring, government services), this may lead to arbitrary loss of opportunities to certain

individuals:
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