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Latency Control in Edge Information Cache and

Dissemination for Unmanned Mobile Machines
Shao-Yu Lien, Shao-Chou Hung, and Hsiang Hsu

Abstract—Unmanned technologies facilitating human activ-
ities have been regarded as the most promising innovation to
empower fully automatic and intelligent ecosystems. Targeting
at extending the processing capabilities of humans, unmanned
mobile machines (UMMs) are designated to devise the op-
timum action at varying operating conditions, which relies
on prompt information provisioning through existing cellular
infrastructures, and renders latency control to information
acquisition an inevitable challenge. For this purpose, caching
information at network edges has been a remedy for sub-
stantial latency reduction, which however ignores practical
cell deployment inducing imbalanced wireless services to each
UMM in the hot-spot and rural areas. In this paper, through
formulating the Lyapunov function, an algorithm optimizing
the utilization of fronthaul resources while stabilizing each
UMM’s queue is proposed for edge information cache and
dissemination in the hot-spot areas. Furthermore, through
formulating the cost measurement as the Cobb-Douglas pro-
duction function, the optimal beginning time of cache is also
derived for UMMs in the rural areas. With the provided
analytical foundations and simulation studies, the effectiveness
of our latency control scheme is fully demonstrated.

Index Terms—Latency control, UMMs, edge information
cache, Lyapunov function, epidemic spreading.

I. INTRODUCTION

UNMANNED mobile machines (UMMs) embracing

robots, drones, vehicles, etc. are projected to funda-

mentally shift the present paradigms in industries, com-

merce, agriculture, and transportation [1], [2]. These UMMs

cruising down the urban areas (such as indoor shopping

malls or outdoor streets) or rural areas (mountain districts,

or locations unreachable by humans) are designated to

optimally process the assigned tasks [3] under varying

operating conditions, which relies on prompt and ubiq-

uitous information provisioning through wireless commu-

nication/network technologies. This demand consequently

renders the exploitation on existing cellular infrastructure a

tractable solution [4]. However, the existing cell planning

strategies of operators’ utilitarian interests target at opti-

mizing the user experience of human-carried devices. As a

result, base stations (BSs) may not be deployed uniformly

over a geographic area [5], but operators may massively

deploy BSs at the areas with a high population (hot-spot
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areas) and sparsely deploy BSs at the areas with a low

population (rural areas), as illustrated in Fig. 1. Since

operating on unreachable regions by humans is one of

the major use cases of UMMs, the existing cell planning

strategies may not fully sustain UMMs without additional

designs.

Both in the hot-spot and rural areas, low latency in-

formation acquisition is of crucial importance for UMMs

[6] to process timing-sensitive tasks. In the hot-spot areas,

an UMM is able to obtain all desired information from a

cloud server through connecting to a BS(s), as illustrated in

Fig. 1. However, acquiring information from a cloud server

involves data traversal through a considerable number of

routers, switches and gateways at backhaul links (i.e., links

between BSs and a cloud server), to lead to an unaffordable

latency performance [7]. Recently, this challenge motivates

the contrivances to cache frequently accessed information

[8] at network edges such as BSs. In this case, when an

UMM requests information from a cloud server through

connecting to a BS, a BS that has cached this information

is able to directly offer requested information to an UMM.

As a result, backhaul links can be avoided to significantly

improve the latency performance. However, due to limited

cache space, each BS may cache a part of information

which is distinct from that in other BSs. When an UMM

is eager for particular information, although requesting this

information from more BSs may increase the probability

to successfully obtain desired information, more resources

are also consumed at fronthaul links (i.e., link between

a BS and a UMM) through using this scheme. On the

contrary, the less BSs an UMM acquires information from,

the lower probability an UMM can successfully obtain

desired information. If none of requested BSs cache desired

information, then this information should be provided from

the cloud server through backhaul links. Consequently,

there is a tradeoff between the latency performance and

the amount of resources utilized on the fronthaul links.

In the rural areas, it is likely that an UMM cannot

connect to any BS, as illustrated in Fig. 1. To facilitate

prompt information dissemination, information cache can

be extended from BSs to each UMM. When wireless

services from a BS are available, an UMM not only

acquires desired information but also further caches this

information. Subsequently, when this UMM moves outward

coverage of BSs, cached information can be disseminated

to other UMMs in physical proximity [9]. Such information

cache and dissemination among UMMs through stochastic

mobility and contact form a new spreading behavior and
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Fig. 1. Operators may massively deploy BSs at the areas with a high
population (hot-spot areas) and sparsely deploy BSs at the areas with a
low population (rural areas).

dynamics [10], which can be analogous to the well known

disease epidemics [11]. To prolong the battery life for

each UMM, energy efficiency is of pivotal significance in

designs from all the aspects for an UMM. This concern

thus conduces an adequate beginning time for each UMM

to perform information cache a critical issue.

To address these critical issues, in this paper, we should

develop the optimum latency control of information cache

and dissemination for UMMs. The contributions of this

paper thus include the followings.

• We derive analytical foundations to strike the trade-

off between the latency performance and resource

utilization at fronthaul links in the hot-spot areas.

With the facilitation of Lyapunov function [12], the

devised design is analytically proven to effectively

maximize the fronthaul resource utilization with a

bounded latency in information acquisition.

• Furthermore, through formulating the cost of cache as

the Cobb-Douglas production function, we analytically

derive the optimum control to the beginning time of

cache for epidemic information dissemination among

UMMs in the rural areas.

Through the analytical and simulation studies, the derived

optimum cache time is shown to achieve efficacious infor-

mation dissemination within a bounded latency.

II. RELATED WORKS

Cloud storage/computing to collect and process data

around the world at a unified cloud server has been

demonstrated to empower ubiquitous knowledge acquisition

and global information analysis/management [13]. With

the aid of existing cellular infrastructure, this paradigm

has been further extended to mobile users, devices, and

UMMs to access both location-based and non-location-

based information in this decade. However, recent research

has revealed severe inefficiency of cloud storage/computing

due to scalability [6], [14], and such inefficiency includes

1) growing latency to access information stored/processed

at databases whose physical locations could be any place on

this planet, 2) growing burdens on backhaul links of mobile

networks to forward information between BSs and the

cloud server, 3) decreasing spectrum utilization at fronthaul

links of mobile networks due to heavy burdens to forward

information between BSs and mobile users. These thorny

issues consequently drive the development of edge content

cache and dissemination [8], [9], [15]–[21].

Caching frequently desired information at network edges

has been regarded as a promising innovation to tackle

the scalability issue [8], [22] so as to significantly alle-

viate information acquisition latency and traffic burdens at

backhaul links [8], [17], [19]. In the meantime, network

edges may further disseminate cached/obtained informa-

tion/knowledge to other network edges [9], [15], [20].

As information dissemination only occurs among network

edges in physical proximity, spectrum could be fully reused

in the spatial domain to considerably enhance the spectrum

utilization at fronthaul links [16], [18]. Further, recent

research also reveals that energy efficiency of mobile net-

works can be significantly improved with the facilitation of

edge content cache and dissemination [21].

Despite considerable discussions on the technical merits

in terms of latency, traffic burdens at backhaul links and

the spectrum utilization at fronthaul links, an optimum

cache design tailored for UMMs utilizing existing cellular

infrastructures still remains open. To practice UMMs, we

therefore should address this urgent and open challenge.

III. SYSTEM MODEL

In the literature, extensive research studies have reveled

that a device may have distinct levels of interests in

accessing different contents [23]. Owing this fact, denoting

the set of overall contents as K and denoting the number

of contents in the set as ‖K‖, the Zipt distribution has

been shown a general model to capture the popularities

of each content in K [20]. That is, through ranking the

popularities of all the contents from the most popular to

the least popular as k = 1, · · · , ‖K‖, the probability that

an UMM requests for the kth most popular content follows

the Zipf distribution pk = 1/kξ

H‖K‖
, where H‖K‖ =

∑‖K‖
k=1

1
kξ

and ξ ∈ [0,∞) is a skew factor. The definitions of all

notations used in this paper are summarized in Table I.

A. Hot-Spot Areas

In the hot-spot areas with massive BS deployment as

shown in Fig. 1, denote Af
t as the set of total BSs available

to be connected by an UMM at time t, which are indexed
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TABLE I
NOTATIONS USED IN THIS PAPER

Notations Definitions

‖ · ‖ Number of elements in the set ·
K Set of overall contents

pk Probability of occurrence

of the kth popular content

ξ, α Skew factor of Zipt distribution

H‖K‖ H‖K‖ =
∑‖K‖

k=1

1

kξ

Af
t Set of total BSs available to be

connected by an UMM at time t

Af
t Set of BSs connected by an UMM

Zl Maximum amount of contents that can be

stored in the local cache of a BS

Zg Maximum amount of contents that can be

stored in the global cache of a BS

Kl
n Available contents in the local cache

Kg
n Available contents in the global cache

Kb
t Set of available contents stored at cloud server at time t
C Set of contents that an UMM is able to access to

Uk(t) Length of a task queue (requiring the kth most

popular content) at time t in an UMM

ak(t) Number of arriving tasks requiring

the kth most popular content

uk(t) Number of proceed tasks requiring the kth

most popular content at time t
λk Expected value of ak(t)
λ0 Overall task arrival rate

̟l Processing rates if contents are

obtained from BSs

̟g Processing rates if contents are obtained

from cloud server

lbs(t), abs(t) Numbers of BSs which leave and

enter connectable region

S(t) Number of potential viewers of contents

R(t) Number of UMMs who have accessed the content

and never request it again

I(t) Contagious UMMs who want but

still waiting for the content

δ Distance of physical proximity

N Total number of UMMs in the rural areas

L Range of the rural area

TC Beginning time to perform cache

κ2 , κ1 Processing rates with and without cache

Ŝ(t) Normalized susceptible population at time t

R̂(t) Normalized recovered population at time t
ν Virality of the content

η Average number of contacted UMMs per unit time

Ṡ(t), Ṙ(t), İ(t) Ṡ(t) = dS(t)/dt, Ṙ(t) = dR(t)/dt,

İ(t) = dI(t)/dt
κ Socially cooperative sharing coefficient

nb(t) Amount of contents downloaded from cloud server at t
1bk An indicator

nf (t) Number of connected BSs at time t
ϑ Maximum amount of the contents permitted

to download from cloud server

L(t) Lyapunov function

V Cost weight of utilizing fronthaul links (BSs)

by n = 1, · · · , ‖Af
t ‖, where ‖Af

t ‖ is the number of BSs in

Af
t . When an UMM wishes to acquire a content, this UMM

connects to a set of BSs Af
t ∈ Af

t to request for the content.

When a BS in Af
t receives such a request at the fronthaul

link, a BS may relay this request to a cloud server and the

desired content can be provided through backhaul links.

As aforementioned, data traverse through backhaul links

may induce unacceptable latency, and an accurate model

on such latency on backhaul links may not be analytically

tractable. Each BS may perform content cache to avoid

utilizing backhaul links. For this purpose, each BS contains

two cache spaces; one is known as “local cache” storing

location-based contents collected by the BS itself, and

another one is known as “global cache” storing global wise

contents downloaded from a cloud server. The maximum

amounts of contents that can be stored in local and global

cache are denoted by Zl and Zg, respectively. Therefore,

the available contents in the local and global caches of

the nth BS can be denoted by Kl
n ∈ K (‖Kl

n‖ < Zl)

and Kg
n ∈ K (‖Kg

n‖ < Zg), respectively. Obviously, the

set of contents that are cached and can be provided by

the nth BS is Kl
n ∪ Kg

n. If an UMM connects to more

than one BS, then the set of available contents is extended

to
⋃

n∈Af
t

(

Kl
n ∪ Kg

n

)

. As a result, the more BSs that an

UMM connects to, the higher probability that the desired

content falls within
⋃

n∈Af
t

(

Kl
n ∪Kg

n

)

as Af
t is extended.

However, if unfortunately the desired content does not

fall within
⋃

n∈Af
t

(

Kl
n ∪ Kg

n

)

, an UMM only relies on a

single BS to acquire the content from the cloud server.

Consequently, the set of contents that an UMM is able to

access to can be generally expressed by

C ,
⋃

n∈Af
t

(

Kl
n ∪ Kg

n

)

⋃

Kb
t , (1)

where we denote Kb
t ∈ K as the set of available contents

stored at the cloud server at time t.

Let Uk(t), k ∈ K, denote the length of a task queue

(requiring the kth most popular content) at time t in an

UMM. A task in the queue can be processed and removed

from the queue only if a content (of the kth most popular)

can be obtained from the cloud server or from a BS. The

dynamics of Uk(t) can be captured by

Uk(t+ 1) = (Uk(t)− uk(t))
+
+ ak(t), ∀k ∈ K, (2)

where ak(t) is the number of arriving tasks requiring the

kth most popular content, and uk(t) is the number of

proceed tasks requiring the kth most popular content at

time t. The arrival process of ak(t) depends on practical

applications. For example, ak(t) can be Gamma distributed

for Internet-of-Things (IoT) use cases, or follows Poisson

distribution. Generally consider the expected value of ak(t)
as λk, which is determined by the associated popularity of

the content. That is, the fraction of the task arrival rate also

follows the Zipf distribution with skew factor α ∈ [0,∞).
Therefore, λk can be expressed by λk = λ0pk, where λ0 is

the overall task arrival rate with every associated popularity

of desired contents. Likewise, we generally regard the

expected value of uk(t) as a function of C,

E (uk(t)) = fk(C) =



















̟l, k ∈
⋃

n∈Af
t

(

Kl
n ∪ Kg

n

)

̟g, k ∈ Kb
t

0, if k /∈ C,

(3)

where ̟l and ̟g are the processing rates if the kth most

popular contents are obtained from BSs and the cloud

server, respectively. That is, E (uk(t)) depends on whether

an UMM is able to obtain a content of the popularity k
from a BS or from the cloud server. If the contents cannot

be obtained, then the processing rate degrades to zero.
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B. Rural Areas

In the rural or human-unreachable areas as shown in

Fig. 1, BSs are generally sparsely deployed. In this case,

information dissemination mainly relies on opportunistic

mobility and contacts among UMMs. To analyze the time

dynamics of information dissemination, the non-linear or-

dinary differential equations (ODE) of epidemic spreading

to model the system [11]. Particularly, the susceptible-

infected-recovered (SIR) model is adopted as the state

evolution equations for the system [24]. To connect the

analogue between the SIR model and the composition

of UMMs, three compartments S(t), I(t), and R(t) are

denoted as the susceptible, infected, and recovered popu-

lations of UMMs at time t, as illustrated in Fig. 1. The

susceptible UMMs S(t) represent the potential viewers

of the content; the infected UMMs I(t) are contagious

UMMs who want but still waiting for the content; the

recovered UMMs R(t) represent those who have accessed

the content and never request it again. An infected UMM

can attract a susceptible UMM to access the content when

they are in physical proximity within a range of δ. Denote

N as the total number of UMMs in the rural areas, i.e.,

S(t) + I(t) + R(t) = N , ∀t ≥ 0, and these UMMs move

randomly in a L× L square area.

1) Information Cache at BSs: If all UMMs lack the

capability to cache the contents, infected UMMs can only

acquire the contents from the BSs with limited bandwidth

at backhaul links. Although an UMM that has obtained

the content from the BSs is able to further disseminate the

content to other UMMs when they are within a region of δ,

limited bandwidth of backhaul links could be a bottleneck

for uk(t) provided from BSs. However, if contents can be

cached at BSs, the processing rate of tasks can be enhanced

due to the shift of traffic load from backhaul links to BSs

[25]. In this case, the processing rate can be expressed by

uk(t) =

{

κ1, t < TC

κ2, t ≥ TC

(4)

TC is the beginning time to cache the content at the BS, and

0 ≤ κ1 ≤ κ2 ≤ 1. κ2 and κ1 are the processing rates with

and without cache, respectively. The dynamics of infected

population is determined by the pairwise virality of the

content, rate of contacts among UMMs and the fraction of

susceptible UMMs to the epidemic content. The recovered

population is controlled by uk(t) of the BS. Putting all

together, the state equations can be formulated as










İ(t) = νηŜ(t)I(t) − uk(t)I(t),

Ṙ(t) = uk(t)I(t),

Ṡ(t) + İ(t) + Ṙ(t) = 0,

(5)

where Ŝ(t) = S(t)/N is the normalized susceptible popu-

lation at time t; ν ∈ R is the virality of the content, which

can be regarded as the penchant for susceptible UMMs

to request the content upon contact with infected UMMs

in the range δ; η = πδ2/L2 is the average number of

contacted UMMs per unit time. The last equation is implied

from fixed total population N , where Ṡ(t) = dS(t)/dt,
Ṙ(t) = dR(t)/dt, and İ(t) = dI(t)/dt.

2) Information Cache Both at BSs and UMMs: In the

previous scheme, direct opportunistic exchange of contents

is utilized for content dissemination. Nevertheless, this

feature can be further enhanced when cache is extended

to UMMs. That is, the recovered UMMs can cache the

epidemically spread contents and share them to socially

satisfy other UMMs. The population of recovered UMMs

can thus be further increased through the cooperative shar-

ing among UMMs. Consequently, the state equations can

be formulated as










İ(t) = νηŜ(t)I(t)− uk(t)I(t)− φ(t)ηR̂(t)I(t),

Ṙ(t) = uk(t)I(t) + φ(t)ηR̂(t)I(t),

Ṡ(t) + İ(t) + Ṙ(t) = 0,
(6)

where R̂(t) = R(t)/N is the normalized recovered popu-

lation at time t,

φ(t) =

{

0, t < TC

κ, t ≥ TC

(7)

and κ ∈ [0, 1] is the socially cooperative sharing coefficient,

which can be interpreted as the pairwise willingness to

share the epidemic content. Each recovered UMM starts

to cache the content and provide auxiliary sharing of

the content after time TC . A direct observation from (6)

shows that this scheme proliferates the recovered population

and therefore alleviates the growth of infected population.

Moreover, comparing (5) and (6), only caching contents at

BSs is actually a degenerate case of performing cache both

at BSs and UMMS when κ = 0, which means that the total

service of the content comes from the BS.

IV. LATENCY CONTROL TO INFORMATION CACHE AND

DISSEMINATION IN HOT-SPOT AREAS

A. Problem Formulation

From (3), we observe that the more BSs an UMM

connects to, the larger the probability that an UMM is

able to successfully acquire the desired content without

utilizing the cloud server. However, owning the fact that

the number of BSs (and thus the amount of resources at

fronthaul links) is limited, it is infeasible to permit an

UMM to connect to all the BSs; otherwise, every UMM

may suffer from unacceptable latency at fronthaul links

due to connection congestion. Therefore, each UMM should

connect to as least number of BSs as possible. On the other

hand, although an UMM can certainly obtain the desired

content from the cloud server, it is infeasible to permit an

UMM always to acquire the content from the cloud server,

due to the intractably large latency induced by utilizing

the backhaul link. Consequently, the latency control to

information cache and dissemination can be formulated as

the following optimization.

Definition 1. Denoting nb(t) as the amount of contents
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downloaded from the cloud server at t, nb(t) is defined by

nb(t) , |Kb
t | =

∑

k∈K

1bk, (8)

where 1bk is an indicator, which equals to 1 if the content

is downloaded from the cloud server and 0 if not, i.e.,

1bk =

{

1, k ∈ Kb
t

0, k /∈ Kb
t .

(9)

Definition 2. The time-averaged amount of contents down-

loaded from the cloud server is defined by

nb , lim
T→∞

1

T

T
∑

t=1

nb(t). (10)

Optimization 1. Denoting nf (t) as the number of con-

nected BSs at time t (i.e., nf (t) , |Af
t |), and denote ϑ as

the maximum amount of the contents permitted to download

from the cloud server, the optimal control is given by

min
Af

t ,nb(t)
nf , lim

T→∞

1

T

T
∑

t=1

nf (t)

s.t. (i) nb < ϑ

(ii) lim
t→∞

Uk(t) < B, ∀B < ∞, ∀k ∈ K,

(11)

The objective of (11) minimizes the time-averaged num-

ber of connected BSs, subject to two constraints. The

constraint (i) guarantees that the time-averaged amount of

contents downloaded from the cloud server does not exceed

ϑ, and (ii) further stabilizes the task queue in an UMM.

B. Proposed Optimum Control Scheme

Since (11) involves time dynamics both in the objective

and constraints, conventional time-invariant optimization

schemes may not be feasible to solve the problem. Fortu-

nately, we may tackle this optimization from the inspiration

of stochastic optimization [26]. To take the constraint (ii)

into account, a virtual queue X(t) can be introduced with

the updating rule X(t+1) = (X(t)− ϑ)+ +nb(t). In this

virtual queue, ϑ can be interpreted as the amount of items

in the queue that have been served at time t, and nb(t) can

be regarded as arrivals at time t of the queue. To make the

virtual queue stable, the necessary and sufficient condition

is to restrict the time-averaged amount of arrivals smaller

than the amount of served items, i.e., nb < ϑ. As a result,

we can convert the constraint (ii) to a dynamic queue, like

Uk(t), and a solution solving (11) should both guarantee

the stability of Uk(t) and X(t). With the updating rule, we

may reformulate (11) to the following optimization.

Optimization 2. At each time t, after observing the present

X(t) and Uk(t), an UMM solves the following optimization

to determine the amount of BSs to connect to, and the

amount of the contents to be downloaded from the cloud

server,

max
Af

t ∈Af
t ,1bk

∑

k∈K

(Uk(t)uk(t)−X(t)1bk)−
V

2
nf (t), (12)

where V > 0 weights the cost of utilizing BSs (fronthaul

links).

Optimization 2 is motivated from the spirit that a queue

with a longer length should be served first. In the following

lemma and theorem, we show that (12) is analytically

tractable, by assuming an extreme case of ϑ=0.

Definition 3. g(C) representing the increment of (12) by

connecting the BSs with the content C ∈ C is defined by

g(C) ,
∑

k∈C

Uk(t)uk(t)−
V

2
. (13)

Lemma 1. Consider two BSs, BS1 and BS2, providing the

content C1 and C2, respectively. If an UMM connects to

both BSs, then the order of the selection to BS1 and BS2

do not affect the performance, i.e. g(C1) + g(C2 \ C1) =
g(C2)+ g(C1 \C2), where Ci \Cj denotes subtracting Cj

from the set of Ci.

Proof: The improvement of (12) by first connecting to

BS1 owning the content C1 then BS2 owning C2 can be

expressed as

g (C1) + g (C2 \C1)

=
∑

k∈C1

Uk(t)uk(t)−
V

2
+

∑

k∈C2\C1

Uk(t)uk(t)−
V

2

=
∑

k∈C1∪C2

Uk(t)uk(t)− V.

=
∑

k∈C2

Uk(t)uk(t)−
V

2
+

∑

k∈C1\C2

Uk(t)uk(t)−
V

2

= g (C2) + g (C1 \ C2) ,
(14)

which complete the proof.

Theorem 1. (12) is tractable at least using the greedy

scheme. That is, an UMM first selects a BS which can

provide the largest improvement of (12), then selects the

one which can provide the second largest improvement, and

so on, until the objective cannot be further maximized.

Proof: Consider a set of available BSs, Af , which

can be divided into two groups Af
1 and Af

2 containing the

contents C1 and C2, respectively. Without loss of generality,

we assume g(C1) ≥ g(C2), where g(C) is defined in (13).

If connecting to both groups can improve the performance,

according to Lemma 1, then the order of connection does

not affect the performance. We then consider another sce-

nario. If connecting to Af
2 cannot improve the performance

after connecting toh Af
1 , i.e., g(C2 \ C1) < 0, then the

following equation holds

g(C1) > g(C1) + g(C2 \ C1) = g(C2) + g(C1 \ C2).
(15)

The last equality is actually the result of first connecting

to Af
2 and then Af

1 . Therefore, (12) is tractable using the

greedy scheme.

With the essence paved by Theorem 1, we can thus

propose the following Algorithm 1 to effectively solve
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(12).

Algorithm 1 Fronthaul First Backhaul Last (FFBL)

Require: A set of available BSs Af
t

Each BS n ∈ Af
t provides a set of contents Cn.

Chosen set Af
t = ∅.

Ensure: Select a set of BSs Af
t ∈ Af

t to minimize
∑

n∈Af
t
g(Cn).

1: repeat

2: Select a BS with the largest contribution n∗ =
arg maxn∈Af

t
g(Cn).

3: If g(Cn∗) > 0
4: Af

t = Af
t

⋃

n∗

5: Af
t = Af

t \ n∗.

6: else

7: Terminate

8: until Af
t = ∅.

C. Performance Analysis of the Proposed Scheme

In above section, we have demonstrated that the optimum

control in Optimization 1 can be transferred to (12).

We have further shown that (12) is tractable with the

facilitation of Lemma 1 and Theorem 1. Algorithm 1

is subsequently proposed to solve (12). In this section, we

continue the discussion on the performance of this proposed

scheme. For this purpose, the Lyapunov drift function in

stochastic optimization [26] inspires the derivation of this

performance analysis.

Definition 4. The quadratic Lyapunov function of Opti-

mization 1 can be defined by

L(t) ,
∑

k∈K

U2
k (t) +X2(t). (16)

The spirit of this definition is that all the queues, includ-

ing the virtual queue, can be stabilized if the value of L(t)
decreases consistently over time.

Definition 5. The corresponding Lyapunov drift function of

Definition 4 can be defined by ∆L(t) = L(t+ 1)− L(t),
which captures the increasing (or decreasing) rate of the

Lyapunov function.

To stabilize the queues, the value of the Lyapunov drift

function is expected to be as negative as possible since a

negative drift reduces overall queue length. It suggests that

more BSs (and thus more resources at fronthaul links) are

utilized to increase the content dissemination at fronthaul

links. However, the amount of utilized resources at fron-

thaul links should be minimized to avoid severe congestion

at fronthaul links leading to the unacceptable latency per-

formance. To this end, a drift-plus-penalty function can be

introduced, which is defined by ∆L(t) + V nf (t), where

nf (t) can be regarded as the amount of utilized resources

at fronhaul links (i.e., the number of the connected BSs).

V ≥ 0 is the weighting constant on the nf (t). Conse-

quently, the drift-plus-penalty captures the tradeoff between

the utilization of the BSs and the latency performance.

Theorem 2. The performance of Optimization 1 is bounded

by
∑

k
Bk+D

V +n∗
f , where Bk , E

(

̟2
l +̟l + a2k(t)

)

and

D , E
(

ϑ2 + |K|2
)

.

To prove this theorem, we may introduce the following

lemma.

Lemma 2. For positive real numbers X,Y, µ, υ satisfying

Y = max[X − µ, 0] + υ, (17)

then Y 2 ≤ X2 + µ2 + υ2 − 2X(µ− υ).

Proof: If X − µ < 0, then the followings hold

Y 2 = υ2 ≤ (X − µ)2 + υ2 + 2Xυ

= X2 + µ2 + υ2 − 2X(µ− υ).
(18)

If X − µ > 0, Y 2 satisfies

Y 2 = (X − µ)
2
+ υ2 + 2 (X − µ) υ

= X2 + µ2 − 2Xµ+ υ2 + 2Xυ − 2µυ

≤ X2 + µ2 + υ2 − 2X (µ− υ)

(19)

With the facilitation of Lemma 2, we are ready to

proceed to the proof of Theorem 2. According to Lemma

2, we obtain

E
(

U2
k (t+ 1)− U2

k (t)
)

≤ E(u2
k(t) + a2k(t)2Uk(t)uk(t) + a2k(t)

+ 2ak(t) (Uk(t)− uk(t)))

≤ Bk − E (2Uk(t) (uk(t)− ak(t))) , ∀k ∈ K

(20)

where E
(

u2
k(t)

)

is replaced with the maximum possible

value of ̟2
l + ̟l which is the mean square value of the

amount of acquired contents defined in (3). Likewise,

E
(

X2(t+ 1)−X2(t)
)

≤ D − E (2X(t) (ϑ− nb(t))) ,
(21)

where n2
b(t) is replaced with the maximum possible value

K since the maximum value of nb(t) occurs when all

contents are downloaded from the cloud server. Taking the

summation of (20) and (21), we obtain

∆L(t) ≤
∑

k∈K

Bk +D

− 2
∑

k∈K

E [Uk(t) (uk(t)− ak(t)) +X(t) (ϑ− nb(t))] .

(22)

Adding both side with V nf (t) and averaging the result over

time, we obtain

V nf (t) ≤
∑

k∈K

Bk +D + 2
∑

k∈K

E (Uk(t)ak(t)−X(t)θ)

− 2

(

∑

k∈K

E [Uk(t)uk(t)−X(t)nb(t)] +
V

2
nf (t)

)

.

(23)

We can observe that (12) is exactly to minimize the right-

hand side of above inequality. It is noted that expectation is

not taken on Uk(t) and X(t), since both of these variables

are regarded as constants at time t. Denote the optimal
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nf (t) utilization scheme as n∗
f (t). Since E (uk(t)− ak(t))

and E (θ − nb(t)) are larger than 0, the upper bound of the

average utilization of the BSs can be obtained by nf ≤∑
k
Bk+D

V + n∗
f The first term on the right-hand-side is the

excess utilization of the BSs, and a larger excess term leads

to a smaller average queue size. The second term on the

right-hand-side, n∗
f , is the minimum utilization of BSs such

that the queue can be stabilized. Consequently, when n∗
f is

achieved through Algorithm 1, nf is minimized as well.

V. LATENCY CONTROL TO INFORMATION CACHE AND

DISSEMINATION IN RURAL AREAS

As aforementioned, the cost of cache is directly related

to the time duration to perform cache. The cost of cache can

be formulated into the cost of control uk(t) in the duration,

since cache leads to higher task departure rate of a queue.

Besides the cost, the efficient control of cache also depends

on the number of recovered UMMs. At the beginning,

there is no recovered UMM, causing scarce sharing and

inefficient cache. Nevertheless, the number of recovered

UMMs increases by time to enhance the sharing. Aiming to

determine the optimal control, we exploit optimal control

theory [27], [28] to capture the cost of cache and the

efficiency of epidemic content dissemination. The goal is

to minimize the performance measurement in the form of

the Cobb-Douglas production function.

Optimization 3. The optimum control to the beginning time

to perform cache aims at solving the following optimization,

T ∗
C = arg min

TC

∫ Tf

0

I(t)β +
1

α
uk(t)

αdt (24)

where uk(t) takes the α-power form, α ≥ 0. β ≥ 0
represents the requirement of network dynamic. Tf is the

completion time for observation.

To solve this optimization, we construct the functional

Hamiltonian H by applying Euler-Lagrange equation as

H (I(t), R(t), uk(t),ΛI(t),ΛR(t))

= I(t)β +
1

α
u(t)α

+ ΛI(t)
[

νηŜ(t)I(t) − uk(t)I(t) − φ(t)ηR̂(t)I(t)
]

+ ΛR(t)
[

uk(t)I(t) + φ(t)ηR̂(t)I(t)
]

(25)

from which the co-state variables Λ∗
I(t) and Λ∗

R(t) are the

partial derivatives of the Hamiltonian with respect to I(t)
and R(t):

Λ̇∗
I(t) = −

∂H

∂I
= −βI(t)β−1 − Λ∗

I(t)

× [νη
N − 2I(t)−R(t)

N
− uk(t)− φ(t)η

R(t)

N
]

− Λ∗
R(t)

[

u(t) + φ(t)η
R(t)

N

]

(26)

Λ̇∗
R(t) = −

∂H

∂R

= Λ∗
I(t)

[

νη
I(t)

N
+ φ(t)η

I(t)

N

]

− Λ∗
R(t)φ(t)η

I(t)

N
(27)

with boundary conditions Λ̇∗
I(Tf ) = Λ̇∗

R(Tf ) = 0. Assum-

ing that all of the state and co-state variables are according

to their values for the optimal control u∗
k(t), we rewrite the

Hamiltonian in (25) with the switching function

θ∗(t) := Λ∗
I(t)I(t)− Λ∗

R(t)I(t) = [Λ∗
I(t)− Λ∗

R(t)] I(t) (28)

yielding

H (I∗(t), R∗(t), uk(t),Λ
∗
I(t),Λ

∗
R(t))

= I(t)β +
1

α
uk(t)

α − θ∗(t)uk(t)

+ ηI∗(t)
[

Λ∗
I(t)

(

νŜ(t)− φ(t)R̂(t)
)

+ Λ∗
R(t)φ(t)R̂(t)

]

(29)

By Pontryagin’s minimum principle [29], the unconstrained

optimal control U∗(t) with free end time Tf that minimizes

the performance measure is the solution of the equation
∂H
∂uk

= 0. From the reformed Hamiltonian in (29), we

have U∗
k (t) = θ∗(t)

1

α−1 . That is, U∗
k (t) can be obtained by

solving the state variables in (6), (26) and (27). Moreover,

with the acceptable control uk(t) ∈ [0, 1], the induced

constrained optimal control u∗
k(t) is

u∗
k(t) =











0 if θ∗(t) ≤ 0

θ∗(t)
1

α−1 if θ∗(t) ∈ (0, 1)

1 if θ∗(t) ≥ 1.

(30)

We may observe a discrepancy between uk(t) in (4)

and the constrained optimal control u∗(t), since u∗(t) is

acquired by presuming that cache can be performed at

initial time 0. In (4), we consider a realistic situation where

uk(t) increases only after the optimal caching time T ∗
C .

With T ∗
C , we can bridge the gap between (4) and (30).

VI. PERFORMANCE EVALUATION

A. Simulation Studies of the Hot-Spot Area Cases

For the hot-spot areas, each BS selects Zl contents

among K to store in the local cache. Since the local cache

stores location-based knowledge, these contents may be

equally relevant to UMMs. To capture this characteristic,

the popularities of Zl contents is assumed to follow the

uniform distribution. Each BS selects Zg contents to store

in the global cache following the Zipf distribution. Due to

the mobile nature of UMMs, the number of connectable

BSs for each UMM, Nbs(t), may vary over time t. To

capture this dynamics, Nbs(t) is modeled as a queue, that

is,

Nbs(t+ 1) = max(Nbs(t)− lbs(t), 0) + abs(t), (31)

where lbs(t) and abs(t) are the numbers of BSs which leave

and enter the connectable region (e.g., the distance between

an UMM and a BSis less than 150 m) of an UMM at
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Fig. 2. Average total queue length with different BS utilizations and ξu,
where the cloud server utilization constraint ϑ = 0.3, ξ = 5, Zl = 10
and Zg = 10.

time t, respectively. In this simulation, the velocity of each

UMM is 20 m/s [30] (to simulate moderate mobility of

drones), and the deployment of BSs follows a homogeneous

Poisson Point Process with the density 5 × 10−5/m2.

The task arrival process follows a Poisson process as a

demonstration example. The mean of the total task arrival

rate is normalized to 1, i.e.,
∑

k ak(t) = 1. The amount of

total available content ‖K‖ = 40, and processing rates are

considered to be ̟l = 2 and ̟g = 1.5.

In Fig. 2, we evaluate the optimum performance in

terms of the average total queue length of all UMMa

under different BS (fronthaul link) utilization values. In this

performance evaluation, the skew factor of each UMM ξu
is adopted to capture whether an UMM demands only a

particular sort of contents (low ξu) or a variety of contents

(high ξu). We can observe from Fig. 2 that, the average

queue length increases under a low BS utilization. When

the BS utilization is low, the fronthaul links become the

bottleneck to acquire contents, which thus increases the

average queue length. Please note that, a low BS utilization

is resulted from a large V value. Since V is the cost of

utilizing a BS (fronthaul link), a large V is the result

of a scheme preferring to connect to less BSs (fronthaul

links), which consequently increases the queue length. Fig.

2 also shows that, a high ξu may lead to an extremely

large average total queue length under a low BS utilization.

This phenomenon is also expected. Since a high ξu value

suggests that each UMM may demand a variety of contents,

if the BS utilization is low, then each UMM may utilize few

fronthaul resources. As a result, it is likely that an UMM

may not obtain desired information from the accessed BS.

This result also aligns with the intuition that there is a

tradeoff between the BS utilization and the average queue

length.

In Fig. 3, we demonstrate that the proposed FFBL

scheme is able to effectively achieve the optimum per-
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Fig. 3. Minimum BS utilization under different V and ξu.

formance. In [14], the ideal performance of information

cache and dissemination at network edges in terms of the

minimum BS utilization has been derived as rbs ,
n∗
f

E(‖At
f
‖)

.

We can observe from Fig. 3 that, under different skew

factors ξu, the BS utilization asymptotically approaches to

the ideal performance with the increment of V . Aligning

with the results in Fig. 2, the BS utilization decreases with

the increment of V until the minimum BS utilization is

reached. This result suggests that if UMMs desires a variety

of contents, we can deploy BSs with a lower density.

In Fig. 4, we further compare the performance of the

proposed FFBL scheme with that of the cross-layer cache

architecture (CLCA) [31]. In the CLCA [31], each mobile

device may connect to all available BSs with the facilita-

tion of the downlink coordinated multi-point transmissions,

regardless of the traffic congestion at the fronthaul links.

Since there is a tradeoff between the BS utilization and

latency performance, an effective cache design should both

minimize the BS utilization and the length of a task queue.

In this simulation, the Pareto efficiency is therefore adopted

as the performance metric to evaluate the effectiveness of

the proposed scheme, where the Pareto efficiency is defined

as the product of the BS utilization and the length of

a task queue. Consequently, the Pareto efficiency should

be as low as possible. We can observe from Fig. 4 that

the proposed scheme outperforms the CLCA under any

value of the global skew factor ξ. Under a high global

skew factor, information dissemination mainly relies on the

backhaul link. Since an UMM only connects to a limited

number of BSs if information should be acquired through

the backhaul link, the proposed scheme offers a better

performance in terms of the Pareto efficiency in this case.

On the other hand, under a low skew factor, information

is mostly obtained from the global cache and local cache

in BSs. In this case, the proposed scheme also optimizes

the utilization of fronthaul links as well, to lead to an

outstanding Pareto efficiency.
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B. Simulation Studies of the Rural Area Cases

Subsequently, we investigate the optimal beginning time

to perform cache with respect to the cost of cache α and

the requirement of system dynamics in the UMM network

β formed by UMMs and BSs. α could be understood as

the scarcity of cache resource in BSs. In system view,

a larger amount of contents circulating in BSs sharing

the BS storage makes storage capacity more scarce, and

thus leads to a larger α. Meanwhile, β represents the

requirement of the quality of system dynamics. When the

quality is required high, I(t) should be as few as possible,

and β becomes large. Moreover, the optimal beginning

time to perform cache is also investigated with respect to

the virality of the content, as a different system feature

other than popularities of the contents. Pertaining to the

simulation setup, N = 1000 UMMs are moving in a square

area with wrap-around condition via Lèvy walk mobility

model to account more for practical mobility behavior [32],

where the step size and pause time are accounted by a

power-law distribution with negative exponent. The step

size exponent is set to 1.5 and the pause time exponent

is set to 1.38, which fit the real trace-based data collected

in [33]. Other parameters for this simulation are I0 = 1,

L = 100, δ = 1, ν = 1, κ1 = 0.1, κ2 = 0.2, κ = 0.15,

Tf = 150, ΛI(0) = 20, ΛR(0) = 10.

In Fig. 5, the optimal cache time increases with the

increase of α, since if there are many contents circulating

among UMMs and (few) BSs, a longer time should be

required to decide whether to cache the viral content, in

order to optimize the usage of storage capacity at BSs and

the UMMs. Nevertheless, since the number of UMMs who

have viewed the content grows by time, late caching time

implies better chance to efficaciously utilize caching among

UMMs for sharing. However, as we require the number

of UMMs waiting for the content as few as possible, the

optimal caching time becomes early to handle the require-

ment. These two factors form a trade-off in design optimal
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Fig. 5. Optimal caching time T ∗

C
under different (α, β) configurations,

where α stands for the cost of caching and β stands for the requirement
of system dynamic.

caching utilization to serve epidemic contents. Furthermore,

we observe that caching both at BSs and UMMs contributes

to early cache by starting storing in recovered UMMs to

create more sharers of epidemic contents.

Finally, the optimal cache time T ∗
C versus virality ν is

demonstrated in Fig. 6. Obviously, a highly viral content

advances the optimal cache time to handle suddenly mas-

sive requirements; while for lowly viral content, the optimal

cache time is late since it takes a longer time for the content

to infect enough UMMs to help serve the UMMs. For

different situations of cache cost and the requirement of

system dynamic, our previous discussion still holds; that

is, large α delays optimal cache time and large β advances

it. The virality of an epidemic content has more pragmatic

meaning than merely the popularity, since prefect and

centralized traffic monitoring to obtain popularity is often

arduous and not timely. Therefore, virality holds a chance

as a more realistic feature when it comes to UMMs, and an

important system characteristic when designing information

sharing networks. It is obvious that for a small change in

virality, e.g. from 1.5 to 2.0, the optimal cache time could

vary largely.

VII. CONCLUSION

In this paper, a latency control to optimize the resource

utilization at fronthaul links under a given queue length

constraint (latency constraint) for UMMs in the hot-spot

areas, and to determine the optimum cache time for au-

tonomous information dissemination among UMMs in the

rural areas is analytically derived. Given the imposed cost

to perform content cache and dissemination, the popularity

of the contents and the virality of the contents, the proposed

control scheme is able to optimize the performance in

spite of mobility of UMMs. The proposed scheme thus

offers essential foundations for the frontier of information

cache and dissemination designs of UMMs under practical

cellular infrastructure deployment.
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In fact, performing information cache and dissemination

at network edges also facilitates a high energy efficiency

in cellular infrastructures. Since the exploitation of the

backhaul link is alleviated, energy consumptions at back-

haul routers/switches can be abated. However, energy con-

sumptions at fronthaul links may still remain. To minimize

latency, an UMM may utilize as many fronthaul link

resources as possible, and therefore there is a tradeoff

between latency and energy efficiency when information

cache and dissemination are applied. A future work of this

research consequently should aim at achieve the optimum

tradeoff between latency and energy efficiency.
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