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Given a pair of random variables 𝑋, 𝑌 ~𝑃&' and two convex
functions 𝑓) and 𝑓*, we introduce two bottleneck functionals as the
lower and upper boundaries of the two-dimensional convex set that
consists of the pairs 𝐼,- 𝑊;𝑋 , 𝐼,0 𝑊; 𝑌 ,	where 𝐼, denotes f-
information and W varies over the set of all discrete random
variables satisfying the Markov condition 𝑊 → 𝑋 → 𝑌. Applying
Witsenhausen and Wyner‘s approach, we provide an algorithm for
computing boundaries of this set for 𝑓) and 𝑓*, and discrete 𝑃&'. In
the binary symmetric case, we fully characterize the set when (i)
𝑓) 𝑡 = 𝑓* 𝑡 = 𝑡	log	𝑡, (ii) 𝑓)(𝑡) = 𝑓*(𝑡) = 𝑡* − 1, and (iii) f)
and f* are both ℓ> norm function for 𝛽	 > 	1. We then argue that
upper and lower boundaries in (i) correspond to Mrs. Gerber's
Lemma and its inverse (which we call Mr. Gerber's Lemma), in (ii)
correspond to estimation-theoretic variants of Information
Bottleneck and Privacy Funnel, and in (iii) correspond to Arimoto
Information Bottleneck and Privacy Funnel.
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Overview

Two Special Cases of Bottleneck Problems

• f-information: 𝐼, 𝑋; 𝑌 = 𝐷,(𝑃&'||𝑃&𝑃')
• Bottleneck functional:

𝐵,-,,0 𝑃&', 𝑥 = max
H→&→'

𝐼,0 𝑊; 𝑌 	such	that		𝐼,- 𝑊; 𝑋 ≤ 𝑥

• Funnel functional:
𝐹,-,,0 𝑃&', 𝑥 = m𝑖𝑛

H→&→'
𝐼,0 𝑊; 𝑌 	such	that		𝐼,- 𝑊; 𝑋 ≥ 𝑥

• Upper and lower boundaries: 𝐼,- 𝑊;𝑋 , 𝐼,0 𝑊; 𝑌

Geometric Properties of Bottleneck Problems

Main Results

Remarks

1. Allows different f-divergence for X and Y
2. How to find the lower/ upper convex hull in high-dimensional space?
3. EB/ estimation privacy funnel: new clustering techniques
4. The Arimoto’s Mrs. And Mr. Gerber’s lemma for network information
theory: a new form of the Entropy Power Inequality (EPI)
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The Information Bottleneck (IB) [1]
Given two correlated random variables X, Y and 𝑃&', the goal is to
determine a mapping 𝑃H|&

• Lagrangian functional:
𝐵 𝑃&', 𝜆 = max

TU|V
𝐼 𝑊; 𝑌 − 𝜆𝐼(𝑊;𝑋)

• Clustering, natural language processing, analysis on the training
process of deep neural nets [2, 3].

• E.g. X: MNIST handwritten digits, Y: labels, W: features

✽ SEAS, Harvard University, {hsianghsu, fcalmon}@g.harvard.edu, ✝University of Chicago, shahab@uchicago.edu,
☨Massachusetts	Institute	of	Technology, salmansa@mit.edu

Hsiang Hsu✽, Shahab	Asoodeh✝, Salman	Salamatian☨, Flavio	P.	Calmon✽
Generalizing Bottleneck Problems

Motivation
• No operational meanings

• f-divergence: 𝐷,(𝑃| 𝑄 = 𝔼 𝑓 YT
YZ

• f-divergence. 𝜒*-divergence: MMSE, Total variation, Hellinger
distance: hypothesis testing [5, 6].

• The method for the IB does not hold for f-divergence [7].

Goal

Numerical Solutions for Generalized Bottleneck Problems
1. Compute 𝜙 𝑝, 𝜆 = 𝑔 𝑇𝑝 − 𝜆𝑓(𝑝)
2. Compute the lower convex envelope 𝜓 𝑝, 𝜆
1) If 𝜙 𝑞, 𝜆 = 𝜓 𝑞, 𝜆 , return (f(q), g(Tq))
2) If not, find a convex combination for q, and apply the
combination to (f(q), g(Tq))

Figure 2: Left: The estimation bottleneck and privacy funnel.
Right: Set of achievable pairs of Arimoto mutual information
𝐼> 𝑊;𝑋 , 𝐼> 𝑊; 𝑌

Generalizing Witsenhausen’s and Wyner’s results in 1975 [8]
• 𝑊 → 𝑋 → 𝑌, 𝑃'|& = 𝑇, pc = Pe|f X W = w , 𝛼k = 𝑃H(𝑤)

𝐶 𝑇 = 𝑞, 𝔼 𝑓 𝑝k , 𝔼 𝑔 𝑇𝑝k : 𝑝k ∈ Δq, r 𝛼k𝑝k = 𝑞
�

k∈H
𝑆 𝑇 = 𝑝, 𝑓 𝑝 , 𝑔 𝑇𝑝 : 𝑝 ∈ Δq

• 𝐶(𝑇) = convex hull of 𝑆(𝑇)
• Lower convex hull of 𝜙 𝑝, 𝜆 = 𝑔 𝑇𝑝 − 𝜆𝑓(𝑝) equals to
min 𝑦 − 𝜆𝑥: 𝑞, 𝑥, 𝑦 ∈ 𝐶(𝑇)

Applications of the Generalized Bottleneck Problems
1. Estimation Bottleneck (EB) Problem
• 𝑓)(𝑡) = 𝑓*(𝑡) = 𝑡* − 1.

• 𝐼,- 𝑊;𝑋 = 𝜒* 𝑊;𝑋 = 𝔼 TUV(H,	&)
TU(H)TV(&)

− 1

• 𝜒* 𝑋; 𝑌 = ∑ 𝜆y(𝑋; 𝑌)Y
yz) , the sum of Principal Inertia

Components (PICs) [4], which is a direct bound of the
largest MMSE of estimating X given Y

2. Estimation Privacy Funnel
• 𝐹{0 𝑃&', 𝑥 = m𝑖𝑛

H→&→'
𝐼,0 𝑊; 𝑌 	such	that		𝐼,- 𝑊; 𝑋 ≥ 𝑥

• Privacy measured in MMSE

2. Mr. Gerber’s Lemma [9]
• 𝑓) 𝑡 = 𝑓* 𝑡 = ℎ} , the binary entropy function
• Mrs. Gerber’s Lemma

𝐿𝑻 𝒒, 𝑥 = ℎ} 𝛿 ∗ ℎ}
�)(𝑥) , ∀𝑥 ∈ [0, ℎ}(𝑞)]

• Mr. Gerber’s Lemma
𝑈𝑻 𝒒, 𝑥 = 𝑎ℎ} 𝛿 ∗ 𝑞/𝑧 + 𝑎�ℎ} 𝛿 ,	

𝑥 = 𝑎	ℎ}(𝑞/𝑧)], z = max(a, 2q), a ∈ [0, 1]

4. Arimoto’s Mrs. And Mr. Gerber’s Lemma
• Ariosto's version of conditional Renyi entropy: for 𝛽 > 2,

𝐻> 𝑋 𝑊 =
𝛽

1 − 𝛽 𝑙𝑜𝑔 r 𝛼k 𝒑k >

�

k∈f

• 𝐾> 𝑋 = 𝑒𝑥𝑝 )�>
>
𝐻> 𝑋 , 𝜙 𝑝, 𝜆 = 𝐾> 𝛿 ∗ 𝑝 − 𝜆𝐾>(𝑝)

• Arimoto’s Mrs. Gerber’s Lemma:
𝛽

1 − 𝛽 𝑙𝑜𝑔𝑦 = m𝑖𝑛
H→&→'

𝐻> 𝑌|𝑊 	such	that		𝐻> 𝑋|𝑊 ≥
𝛽

1 − 𝛽
𝑥, 𝑦 ∈ { 𝐾> 𝑝 , 𝐾> 𝑝 ∗ 𝛿 : 0 ≤ 𝑝 ≤ 𝑞}

• Arimoto’s Mr.s Gerber’s Lemma:
>
)�>

𝑙𝑜𝑔𝑦 = m𝑎𝑥
H→&→'

𝐻> 𝑌|𝑊 	such	that		𝐻> 𝑋|𝑊 ≤ >
)�>

𝑥, 𝑦 ∈ { 𝑎� + 𝑎𝐾>
𝑞
𝑧 , 𝑎𝐾>

𝑞
𝑧 ∗ 𝛿 + 𝑎𝐾> 𝛿 : 0 ≤ 𝑝

≤ 𝑞, 𝑎 ∈ 0, 1 , 𝑧 = max	{𝑎, 2𝑞}}

0 10.5𝑝� 1 − 𝑝�

𝜙(𝑝, 𝜆)

𝜓(𝑝, 𝜆)

Figure 1: T follows BSC with crossover probability 𝛿 = 	0.1	and
𝑃{	𝑋 = 1	} 	= 	𝑞	 = 	0.5.

The Privacy Funnel (PR) [4]
The Privacy Funnel is a converse optimization problem comparing
to the IB. The goal is to seek a mapping 𝑃H|& satisfying:

• Lagrangian functional:
𝐹 𝑃&', 𝜆 = m𝑖𝑛

TU|V
𝐼 𝑊; 𝑌 − 𝜆𝐼(𝑊;𝑋)

• Useful in information-theoretic privacy
• E.g. X: Movie rating, Y: Political preference, W: Movie favor


