Overview

Given a pair of random variables $(X, Y) \sim P_{XY}$ and two convex functions f_1 and f_2 , we introduce two bottleneck functionals as the lower and upper boundaries of the two-dimensional convex set that consists of the pairs $(I_{f_1}(W;X), I_{f_2}(W;Y))$, where I_f denotes finformation and W varies over the set of all discrete random variables satisfying the Markov condition $W \rightarrow X \rightarrow Y$. Applying Witsenhausen and Wyner's approach, we provide an algorithm for computing boundaries of this set for f_1 and f_2 , and discrete P_{XY} . In the binary symmetric case, we fully characterize the set when (i) $f_1(t) = f_2(t) = t \log t$, (ii) $f_1(t) = f_2(t) = t^2 - 1$, and (iii) f_1 and f_2 are both ℓ^{β} norm function for $\beta > 1$. We then argue that upper and lower boundaries in (i) correspond to Mrs. Gerber's Lemma and its inverse (which we call Mr. Gerber's Lemma), in (ii) correspond to estimation-theoretic variants of Information Bottleneck and Privacy Funnel, and in (iii) correspond to Arimoto Information Bottleneck and Privacy Funnel.

Keywords: Information bottleneck, privacy funnel, finformation, Mrs. Gerber's lemma, Arimoto's conditional entropy.

Two Special Cases of Bottleneck Problems

The Information Bottleneck (IB) [1]

Given two correlated random variables X, Y and P_{XY} , the goal is to determine a mapping $P_{W|X}$

I(W;Y) maximized \Rightarrow information preserved

• Lagrangian functional:

 $B(P_{XY}, \lambda) = \max I(W; Y) - \lambda I(W; X)$

- Clustering, natural language processing, analysis on the training process of deep neural nets [2, 3].
- E.g. X: MNIST handwritten digits, Y: labels, W: features

The Privacy Funnel (PR) [4]

The Privacy Funnel is a converse optimization problem comparing to the IB. The goal is to seek a mapping $P_{W|X}$ satisfying:

- I(W;Y) minimized \Rightarrow privacy leakage
- Lagrangian functional: $F(P_{XY},\lambda) = \min_{P_{WIX}} I(W;Y) - \lambda I(W;X)$
- Useful in information-theoretic privacy
- E.g. X: Movie rating, Y: Political preference, W: Movie favor

Generalizing Bottleneck Problems Hsiang Hsu^{*}, Shahab Asoodeh[†], Salman Salamatian[†], Flavio P. Calmon^{*}

* SEAS, Harvard University, {hsianghsu, fcalmon}@g.harvard.edu, † University of Chicago, shahab@uchicago.edu, [†] Massachusetts Institute of Technology, salmansa@mit.edu

 $\widehat{\boldsymbol{\lambda}}$

Motivation

- No operational meanings
- f-divergence: $D_f(P||Q) = \mathbb{E}\left[f\left(\frac{dP}{dQ}\right)\right]$
- f-divergence. χ^2 -divergence: MMSE, Total variation, Hellinger distance: hypothesis testing [5, 6].
- The method for the IB does not hold for f-divergence [7].

Goal

- f-information: $I_f(X;Y) = D_f(P_{XY}||P_XP_Y)$
- Bottleneck functional: $B_{f_1,f_2}(P_{XY},x) = \max_{W \to X \to Y} I_{f_2}(W;Y)$ such that $I_{f_1}(W;X) \le x$
- Funnel functional: $F_{f_1,f_2}(P_{XY},x) = \min_{W \to X \to Y} I_{f_2}(W;Y)$ such that $I_{f_1}(W;X) \ge x$
- Upper and lower boundaries: $\{(I_{f_1}(W; X), I_{f_2}(W; Y))\}$

$$I_{f_2}(W;Y) = 0 \xrightarrow{B_{f_1,f_2}(P_{XY},x)} (P_{XY},x) = 0 \xrightarrow{I_{f_1}(W;X)} I_{f_1}(W;X)$$

Geometric Properties of Bottleneck Problems

Generalizing Witsenhausen's and Wyner's results in 1975 [8] • $W \to X \to Y, P_{Y|X} = T, p_w = P_{X|W}(X|W = w), \alpha_w = P_W(w)$

$$C(T) = \left\{ (q, \mathbb{E}[f(p_w)], \mathbb{E}[g(Tp_w)]) : p_w \in \Delta_m, \sum_{w \in W} \alpha_w p_w = q \right\}$$
$$S(T) = \left\{ (p, f(p), g(Tp)) : p \in \Delta_m \right\}$$

• C(T) = convex hull of S(T)

• Lower convex hull of $\phi(p,\lambda) = g(Tp) - \lambda f(p)$ equals to $\min\{y - \lambda x : (q, x, y) \in C(T)\}$

The materials in this poster have been accepted by 2018 IEEE International Symposium on Information Theory (ISIT). An extended version can be accessed at https://arxiv.org/abs/1802.05861

. Arimoto's Mrs. And Mr. Gerber's Lemma • Ariosto's version of conditional Renyi entropy: for $\beta > 2$, $H_{\beta}(X|W) = \frac{\beta}{1-\beta} \log \sum_{w \in W} \alpha_{w} \|\boldsymbol{p}_{w}\|_{\beta}$ • $K_{\beta}(X) = exp\left\{\frac{1-\beta}{\beta}H_{\beta}(X)\right\}, \phi(p,\lambda) = K_{\beta}(\delta * p) - \lambda K_{\beta}(p)$ • Arimoto's Mrs. Gerber's Lemma: $\frac{\beta}{1-\beta}\log y = \min_{W \to X \to Y} H_{\beta}(Y|W) \text{ such that } H_{\beta}(X|W) \ge \frac{\beta}{1-\beta}$ $(x, y) \in \{ \left(K_{\beta}(p), K_{\beta}(p * \delta) \right) : 0 \le p \le q \}$

• Arimoto's Mr.s Gerber's Lemma: $\frac{\beta}{1-\beta}\log y = \max_{W \to X \to Y} H_{\beta}(Y|W) \text{ such that } H_{\beta}(X|W) \leq \frac{\beta}{1-\beta}$ $(x, y) \in \left\{ \left(\overline{a} + aK_{\beta}\left(\frac{q}{z}\right), aK_{\beta}\left(\frac{q}{z} * \delta\right) + aK_{\beta}(\delta) \right\} : 0 \le p$ $\leq q, a \in [0, 1], z = \max\{a, 2q\}\}$

Remarks

1. Allows different f-divergence for X and Y

2. How to find the lower/ upper convex hull in high-dimensional space? 3. EB/ estimation privacy funnel: new clustering techniques 4. The Arimoto's Mrs. And Mr. Gerber's lemma for network information theory: a new form of the Entropy Power Inequality (EPI)

Selected References

[1] N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method," in Proc. of IEEE Allerton, 2000.

[2] N. Tishby and N. Zaslavsky, "Deep learning and the information bottleneck principle," in Proc. of IEEE ITW, 2015.

[3] R. Shwartz-Ziv and N. Tishby, "Opening the black box of deep neural networks via information," arXiv preprint arXiv:1703.00810, 2017.

[4] F. P. Calmon, A. Makhdoumi, M. Medard, M. Varia, M. Christiansen, and K. R. Duffy, "Principal inertia components and applications," IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5011–5038, 2017.

[5] C. Nair, "Upper concave envelopes and auxiliary random variables," Int. J. Adv. Eng. Sci. Appl. Math., vol. 5, no. 1, pp. 12–20, 2013.

[6] I. Sason and S. Verd'u, "Arimoto-R'enyi conditional entropy and bayesian m-ary hypothesis testing," arXiv preprint arXiv:1701.01974,

[7] P. Harremoes and N. Tishby, "The information bottleneck revisited or how to choose a good distortion measure," in Proc. of IEEE ISIT, 2007.

[8] H. Witsenhausen and A. Wyner, "A conditional entropy bound for a pair of discrete random variables," IEEE Trans. Inf. Theory, vol. 21, no. 5, pp. 493–501, 1975.

[9] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge university press, 2011.