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Abstract—Given a dataset comprised of individual-level data,
we consider the problem of identifying samples that may be
disclosed without incurring a privacy risk. We address this
challenge by designing a mapping that assigns a “privacy-risk
score” to each sample. This mapping, called the privacy watchdog,
is based on a sample-wise information leakage measure which is
a variation of the information density, deemed here lift privacy.
We show that lift privacy is closely related to well-known
information-theoretic privacy metrics. Moreover, we demonstrate
how the privacy watchdog can be implemented using the Donsker-
Varadhan representation of KL-divergence. We illustrate this
approach on a real-world dataset.

I. INTRODUCTION

Consider a data scientist, Alice, who has in hand a dataset
Dn = {(si, xi)}ni=1 collected from n individuals. We assume
that each entry (si, xi) of the dataset is drawn i.i.d. from PS,X ,
where S represents an individual’s private/sensitve features (e.g.,
political preference) and X the remaining features (e.g., social
media posts). Alice wishes to publish the dataset {xi}ni=1, yet
knows that doing so may incur a privacy risk: by observing
xi, a malicious party may gain information about the private
feature, i.e., PS|X=xi

can be significantly different from PS .
However, not all realizations xi are equally informative, and
certain values could potentially be disclosed with minimal
privacy risk, i.e., PS|X=xi

≈ PS for some xi. How can Alice
identify the entries of {xi}ni=1 that pose the highest (or lowest)
privacy threat?

We address this challenge by designing a privacy watchdog:
a mapping that assigns a privacy-risk score to each sample
in the dataset Dn. Ideally, the watchdog should flag samples
that must be perturbed (e.g., erased, randomized) in order
to ensure privacy, while indicating which samples can be
perfectly disclosed without excessive harm. Moreover, the
watchdog should be data-driven, learning from the dataset
which outcomes of X pose a privacy risk.

To construct the privacy watchdog, we adopt a sample-wise
information leakage measure. A natural choice is the ratio

l(s, x) ,
PS,X(s, x)

PS(s)PX(x)
=
PS|X(s|x)

PS(s)
, ∀(s, x) ∈ S × X , (1)

referred to as the lift [1] in the data mining literature. The
logarithm of the lift (log-lift) i(s, x) , log l(s, x) is, of course,
the information density, and plays a central role in spectral
methods in information theory and finite-blocklength analysis
[2]. The lift is at the heart of most information-theoretic
measures of privacy.

In this paper, we prove properties of lift as a privacy
metric, and show that, by bounding (1), we also bound

several information-theoretic privacy measures, including those
based on Arimoto’s and Sibson’s mutual information [3], f -
divergences [4], and local differential privacy [5]. Moreover,
we demonstrate how a privacy-assuring mapping that merely
perturbs the samples with large (absolute) log-lift has favorable
performance guarantees in terms of privacy and utility. Of
greater practical interest, we use variational representations of
divergence metrics [6] (and the Donsker-Varadhan representa-
tion in particular) to build lift-based privacy watchdogs using
neural networks. We illustrate this approach on ProPublica’s
COMPAS recidivism dataset [7].

The design of privacy mechanisms is an imminent topic in
computer science [8], data mining [9], and information theory
[3], [10]–[14] communities. Within the latter, there has been
significant effort to characterize fundamental trade-offs between
privacy and utility (e.g., [3], [10]), as well as produce privacy
metrics with operational significance (e.g., [14]–[16]). We also
note that variations of information density were mentioned in
[9]–[11] as a measure of privacy. Here, we widen our focus
beyond the analysis of privacy mechanisms and associated
trade-offs to consider the practical challenge faced by Alice.
The privacy watchdog proposed here can be applied to real-
world datasets (as illustrated in Section IV), and naturally
serves as a building block for other privacy mechsmisms (e.g.,
distorting data in accordance to the risk scores given by the
watchdog). Our ultimate goal is to create a richer information-
theoretic toolset for addressing privacy challenges commonly
found in data science.

The remainder of the paper is organized as follows. We
introduce notation and preliminaries next, and examine the
properties of lift as a privacy metric in Section II. We formulate
the privacy watchdog and explore its application in Section III
and finally consider implementation and evaluation with data
in Section IV.

A. Notation

Capital and calligraphic letters are used to denote random
variables and sets, respectively. We also use boldface lowercase
letter to denote vectors. We use PS,X , for joint probability
distribution of S and X , PS|X for conditional probability
distribution of S given X , and PS and PX for marginal
probability distribution of S and X , respectively. When X
is distributed according to PX , we write X ∼ PX . We denote
`p-norm of an n-length vector z by ‖z‖p= (

∑n
i=1 z

p
i )

1
p , where

zi is the ith entry of z. We denote 1{·} to be the indicator
function which returns 1 if the condition in the parentheses is
satisfied and 0 otherwise.



Let f : (0,∞)→ R be a convex function satisfying f(1) =
0. Assume that P and Q are two probability distributions over
a finite set X and that P � Q. The f -divergence [17] between
P and Q is given by

Df (P‖Q) , EQ
[
f

(
P (X)

Q(X)

)]
, (2)

where EQ denotes expectation with respect to distribution Q.
This definition can be used to generalize Shannon’s mutual
information. Replacing P and Q by PS,X and PSPX , one can
define f -information between S and X as

If (S;X) , Df (PS,X‖PSPX). (3)

Kullback-Leibler (KL) divergence D(P‖Q) and Shannon’s
mutual information I(S;X) are special cases of (2) and (3),
respectively, when f(t) = t log t.

II. LIFT-BASED MEASURE OF INFORMATION LEAKAGE

In this section, we first overview the privacy definition used
to design the watchdog, called ε-lift privacy, and derive some
of its properties. In particular, we show ε-lift privacy is closely
related to other existing measures of information leakages
such as local differential privacy [5], maximal leakage [14],
α-leakage [15], and f -information. We note that variations of
ε-lift privacy have appeared in the literature under different
guises (e.g., [9, Defn. 1] and [10, Defn. 6]).

A. ε-Lift Privacy

The value of log-lift i(s, x) indicates whether the sample
x carries significant information about private feature s. This
intuition naturally leads to the following definition.

Definition 1 (ε-lift privacy [10] ). For (S,X) ∼ PS,X , we say
X is an ε-lift private version of S if

−ε ≤ i(s, x) ≤ ε, ∀(s, x) ∈ S × X . (4)

In the following lemma, we demonstrate several properties
of ε-lift privacy.

Lemma 1. If X is an ε-lift private version of S, then
1) S is an ε-lift private version of X .
2) PS|X is 2ε-locally differentially private [5], i.e.

sup
∀s∈S,x,x′∈X

PS|X(s|x)

PS|X(s|x′)
≤ eε. (5)

3) The mutual information I(S;X) between S and X is
upper bounded by ε.

Proof. See Appendix A.

Lemma 1 sheds light on the privacy guarantees that an ε-
lift privacy constraint can provide. In particular, if X is an
ε-lift private version of S, then X cannot reveal more than ε
nats of information (on average) about S. We explore further
connections between ε-lift privacy and information-theoretic
measures for leakage next.

B. Other Information Leakage Measures

Arimoto’s and Sibson’s mutual information and f -
information have recently been proposed as operational mea-
sures for information leakage [3], [18]. Arimoto’s mutual
information of order α ∈ (1,∞) is given by [18]

IAα(S;X) ,
α

α− 1
log

EX [‖PS|X(·|X)‖α]

‖PS‖α
. (6)

When α → ∞, IA∞(S;X) characterizes the ability of an
adversary to correctly guess S given X [16]. In particular,
let the probability of correctly guessing S given X be defined
as

Pc(S|X) , max
gX→S

Pr(S = g(X)) =
∑
x∈X

max
s∈S

PS,X(s, x),

It can be readily verified that IA∞(S;X) = log Pc(S|X)
p∗S

, where
p∗S , maxs∈S PS(s).

Another operational measure of information leakage recently
proposed is Sibson’s mutual information [18] of order α ∈
(0, 1) ∪ (1,∞) between S and X , which is given by

ISα(S;X) , inf
QX

Dα(PS,X‖PSQX). (7)

Here, Dα(P‖Q) , 1
α−1 log

(∑
x P (x)αQ(x)1−α) is the

Rényi divergence [18]. One can also define IS∞(S;X) as the
limit of ISα(S;X) when α→∞. This quantity, termed maximal
leakage, was recently shown to bear an interesting interpretation
in terms of worst-case privacy threats [14]. More precisely,
maximal leakage is equal to the logarithm of the multiplicative
gain in guessing any function of S given an ovservation of X ,
that is

IS∞(S;X) = max
U−S−X

log
Pc(U |X)

p∗U
, (8)

where the maximization is taken over random variable U
forming the Markov chain U − S −X . It is worth mentioning
that ISα(S;X) and IAα(S;X) tend to I(S;X) when α→ 1.

As shown in Lemma 1, ε-lift privacy controls the mutual
information I(S;X). In the following proposition, we further
illustrate that ε-lift privacy controls Sibson’s and Arimoto’s
mutual information and f -information as well.

Proposition 1. If X is an ε-lift private version of S, then
1) We have ISα(S;X) ≤ α

α−1ε. Moreover, the maximal
leakage is upper bounded by ε.

2) We have IAα(S;X) ≤ α
α−1ε. Moreover, Pc(S|X) ≤

p∗S exp(ε).
3) We have If (S;X) ≤ L(ε) where L(ε) , max

e−ε≤t≤eε
f(t).

Proof. See Appendix B.

The above proposition indicates that an ε-lift privacy guaran-
tee is stronger than those obtained by Arimoto’s and Sibson’s
mutual information and also f -information. Thus, ε-lift privacy
inherits the operational interpretation of the well-known privacy
measures listed above. In particular, if X is an ε-lift private
version of S, then no adversary in possession of observation
X can efficiently guess any function of the private feature S.



III. LIFT-BASED PRIVACY WATCHDOG

We define next the privacy watchdog as a simple, yet
powerful, privacy technique that acts directly on the sample
points. Unlike typical information-theoretic privacy-assuring
mechanisms, the privacy watchdog directly assigns a risk score
to each sample point from which it determines whether or not
a sample can be disclosed. Here, we propose to use the lift
to generate the privacy score for each sample point. We then
show how a privacy mechanism can be designed based on the
watchdog.

A. Lift-Based Privacy Watchdog
The lift-based privacy watchdog framework is defined next.

Definition 2. Given a dataset Dn = {(si, xi)}ni=1 drawn i.i.d.
from PS,X and the log-lift1 i(si, xi), the privacy watchdog
decomposes X into two subsets Xε , {x ∈ X | |i(x, s)|≤
ε,∀s ∈ S} and X c , X\Xε. If xi ∈ Xε, then the sample xi
can be disclosed as it does not significantly change the belief
about any of private features si for all i. If xi ∈ X cε , then xi
should be discarded/modified in order to ensure privacy.

The privacy watchdog mechanism described above flags
the sample points xi ∈ Xε whose privacy scores are below
a threshold ε. Based on the output of the watchdog, we can
design a privacy mapping PY |X that perturbs each sample
flagged as posing a privacy risk. Perhaps the simplest such
mapping is one that generates Y in such a way that Y = X
conditioned on the event X ∈ Xε, and draws Y independently
from X otherwise. The resulting Y then ensures lift privacy
with respect to S. This statement is formalized in the following
proposition.

Proposition 2. Let RY be any distribution on a finite set
Y = X satisfying RY (y) = 0, ∀y ∈ Xε, and let the privacy
watchdog PY |X be given by

PY |X(y|x) =

{
1{x=y}, x ∈ Xε,
RY (y), x ∈ X cε .

(9)

Then Y is an γ-lift private version of S with

γ = max

{
log

[
1− eεPX(Xε) + eε

PX(X cε )

]
,

− log

[
1− eεPX(Xε)
PX(X cε )

]}
.

Proof. See Appendix C.

This proposition shows that by disclosing sample points in
Xε, and regardless of the randomization RY used for X cε , the
resulting Y is guaranteed to satisfy the measure of lift privacy.
In light of Lemma 1 and Proposition 1, the guarantees provided
by the mapping (9) results in upper bound for measures of
information leakage discussed in Section II-B. The mapping
(9) is just one example of how the privacy watchdog can be
applied to design privacy mechanisms.

1We describe in Section IV one method for estimating the log-lift from
data.

B. Privacy Funnel

In order to quantify the trade-off between the information
leakage incurred by (9) and the utility (information shared
between X and Y ), we borrow ideas from privacy funnel
framework [19].

Given a pair of correlated random variables (S,X) ∼ PS,X ,
the goal of the privacy funnel is to determine a privacy-assuring
mapping PY |X that generates a representation Y of X such
that (i) S−X−Y and (ii) a given information leakage metric,
denoted by L(S;Y ), is minimized while maximizing I(X;Y )
(utility preserved). This trade-off can be quantified by the
Lagrangian functional

F(PS,X , λ) , min
pY |X

L(S;Y )− λI(X;Y ), (10)

where larger λ ≥ 0 corresponds to higher utility, and L(S;Y )
can be any measure of information leakage introduced in
Section II-B. Privacy funnel and F(PS,X , λ) are studied in
more details in [4], [19].

In general, solving the minimization problem (10) is compu-
tationally challenging due to its non-convexity. Although the
privacy funnel was derived in closed form expression in simple
cases such as binary symmetric channel [4] and Gaussian
mixture models [19], it is still unclear how to solve (even
algorithmically) the optimization problem in general. There
are two algorithms proposed for finding a local minimizer of
(10): (i) a greedy algorithm proposed in [19] and (ii) a convex-
geometric algorithm devised in [4] which works best when
|S| and |X | are small. However, these two algorithms are not
scalable to high-dimensional settings. To circumvent this issue,
algorithms based on neural network architectures have recently
been proposed [20], [21]. The privacy watchdog-based mapping
in (9) provides a new direction for designing privacy-assuring
mappings with (much) less computational effort, translating the
burden to solving the problem of estimating the (thresholded)
log-lift from data.

For the mapping given (9), it can be verified that the utility
I(X;Y ) is given by

I(X;Y ) = HXε
− PX(X cε ) logPX(X cε ), (11)

where HXε , −
∑
x∈Xε

pX(x) log pX(x) is the entropy of X
conditioned on Xε. Thus, the utility consists of two parts: the
first term HXε

is the information preserved by the lift privacy,
and the second term relates to the size of the set X cε .

By Proposition 1 and 2, L(S;Y ) ≤ γ for all measures
of information leakage introduced in Section II-B, and the
objective of the privacy funnel in (10) is upper bounded as

F(PS,X , λ) ≤ L(S;Y )− λI(X;Y )

≤ γ − λ(HXε
− PX(X cε ) logPX(X cε )),

where γ was defined in (10). In particular, in low privacy
regime, i.e., when ε→∞, we have Xε = X and thus Y = X
which leads to the utility I(X;Y ) = HXε

= H(X).



IV. PRIVACY WATCHDOG FROM DATA

We showed in Sections II and III that the ε-lift privacy leads
to bounds on various information leakage measures and also
can be used to design privacy watchdog. However, estimating
the log-lift from the data is somewhat challenging and has been
an active research problem in information theory and computer
science communities [6], [22], [23]. In this section, we propose
a log-lift estimator based on Donsker-Varadhan representation
[6] and then use it to design the privacy watchdog on the
ProPublica’s COMPAS recidivism dataset [7].

A. The Log-Lift Estimator

The log-lift estimator takes advantage of the variational
representation of KL divergence2, called Donsker-Varadhan
(DV) representation, i.e.

I(S;X) = D(PS,X‖PSPX)

sup
g:S×X→R

EPS,X
[g(S,X)]− logEPSPX

[eg(S,X)].(12)

It can be shown that the log-lift is in fact a maximizer of the
above optimization problem, i.e., g∗(s, x) , log

PS,X(s,x)
PS(s)PX(x) .

As such, finding the optimal function g∗(s, x) is equivalent to
estimating the log-lift.

In (12), the search space for the function g is unlimited. A
more practical, yet useful assumption, is to restrict the search
space to a family G(Θ) of bounded functions representable
by a neural network with parameters θ in a compact domain
Θ ⊂ Rm, where m is the number of parameters. The parameters
of the neural network can be fit by approximating (e.g., via
backpropagation) the solution of the following maximization
problem:

ĝn , argmax
g∈G(Θ)

EPSn,Xn
[g(S,X)]− logEPSnPXn

[eg(S,X)], (13)

where PSn,Xn and PSnPXn are the empirical distributions of
PS,X and PSPX respectively. The estimator in (13) belongs to
a broader class of extremum estimators [24] which consists of
estimators of the form â = argmax

a∈A
Λn(a), where Λn(a) is an

objective function and A is a parameter space. The consistency
of such estimators is guaranteed according to the following
lemma.

Lemma 2 (Consistency of Extremum Estimators [24]). Given
the extremum estimator â = argmax

a∈A
Λn(a), if (i) A is compact;

(ii) there exists a limiting function Λ0(a) such that Λn(a)
converges to Λ0(a) in probability over A; (iii) Λ0(a) is
continuous and has unique maximum at a = a0, then â is
a consistent estimator of a0.

Using this lemma, together with the universal approximation
theorem of neural networks [25], we show in the following
proposition that the log-lift estimator in (13) is consistent.

2In fact, the variational representation of f -divergences, Df (P‖Q) =
sup

g:X→R
EP [g(X)]−EQ[f∗(g(X))], where f∗(y) , sup

x∈R
[xy− f(x)] is the

Fenchel conjugate of f , can be used in the log-lift estimator.

Proposition 3. Assume EPS,X
[g(S,X)] and EPSPX

[eg(S,X)]
are finite. The log-lift estimator

ĝn = argmax
g∈G(Θ)

EPSn,Xn
[g(S,X)]− logEPSnPXn

[eg(S,X)]

is consistent, i.e., for any η > 0, there exist N > 0 such that
for all n > N ,

Pr{|ĝn(s, x)− g∗(s, x)|≤ η} = 1, ∀s ∈ S, x ∈ X . (14)

Proof. See Appendix D.

With the log-lift estimator (13) at hand, the set Xε can be
determined and hence the proposed privacy watchdog-based
privacy mechanism in (9) can be implemented on real-world
data, as illustrated next.

As a final remark, we note that the approach outlined above
seeks to estimate the value g∗(s, x) across the entire domain
S × X , whereas the watchdog in Definition 2 requires only a
thresholded version of this function. We will explore the gain
(in terms of sample complexity) of this simplification in future
work.

B. Numerical Experiments

In order to validate our privacy watchdog mechanism, we
implement it on the ProPublica’s COMPAS recidivism racial
bias dataset [7]. This dataset contains the criminal history and
demographic makeup of prisoners in Brower County, Florida
from 2013-2014. We set race as the private attribute S, and
restrict the dataset to entries with race marked as African
American (S = 0) and Caucasian (S = 1). Moreover, we
select gender, age, number of prior crimes, length of custody
and likelihood of recidivism to be the observation X . We pre-
process the dataset by dropping missing/incomplete records,
convert categorical variables by one-hot encoding, and finally
take 5278 samples with 70% − 30% training-test split. For
details about experimental settings, see Appendix E.

In Fig. 1, we demonstrate the estimate of log-lifts i(S = 0, x)
and i(S = 1, x) for all samples, and the boundary of Xε with
ε = 0.85. Interestingly, based on the value of the lift, we
may be able to provide some interpretation on why a given
sample may or may not compromise privacy if released. For
instance, in Table I, we select samples (green dots in Fig. 1)
with high i(S = 0, x) and low i(S = 1, x). Observe that
young males with a high prior count and high recidivism risk
score are flagged as leaking significant information about the
private attribute. For other examples of extreme samples, see
Appendix F.

In Fig. 2, using the privacy watchdog-based privacy mech-
anism, we show the trade-off between the utility I(X;Y )
(11) and the bounds γ (Propoisiton 2) on information leakage
(measured by any metric in Section II-B). When ε is around
0.3, the privacy watchdog chooses to release samples that give
best utility and little information leakage. As ε becomes larger,
the utility remains unchanged, but the information leakage
increases. This kind of numerical analysis could be used to
tune the value of ε in the privacy watchdog.
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Fig. 1: Estimation of lifts for each samples in the COMPAS dataset.
The dashed square contains samples in Xε with ε = 0.85. Green dots
show samples with high privacy risk.

Gender Race Age Prior Counts Length of Stay Recidivism
M AA 21 1 1 9
M AA 33 5 0 5
M C 43 0 2 1
M AA 27 13 0 10
M AA 59 8 8 8
M AA 29 5 5 7
M AA 25 1 0 3

TABLE I: Extreme samples in the COMPAS dataset with high
i(s = 0, x) and low i(s = 1, x) in Fig. 1. M: Male, AA: African
American, C: Caucasian.
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Fig. 2: The trade-off between the utility and information leakage
using the privacy watchdog on training and test set in COMPAS.
Different ε gives the entire approximation of the privacy funnel. The
privacy watchdog reaches a best privacy-utility operation point when
ε is around 0.3.
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APPENDIX

A. Proof of Lemma 1

(1) holds since log
PS|X(s|x)

PS(s) = log
PS,X(s,x)
PS(s)PX(x) =

log
PX|S(x|s)
PX(x) by Bayes’s rules.

(2) holds since for any x, x′ ∈ X and assuming
PS,X(s, x) > 0 and PS,X(s, x′) > 0, by definition 1,∣∣∣∣log

PS|X(s|x)

PS|X(s|x′)

∣∣∣∣
=

∣∣∣∣log
PS|X(s|x)

PS(s)
− log

PS|X(s|x′)
PS(s)

∣∣∣∣ (15)

≤ 2ε, (16)

which is equivalent to the definition of 2ε-local differential
private in (5).

(3) holds since∑
(s,x)∈S×X

PS,X(s, x) log
PS|X(s|x)

PS(s)
≤ ε. (17)

B. Proof of Proposition 1

For (1), by the assumption, we know PS,X(s, x)α ≤
eαεPS(s)αPX(x)α, and

Dα(PS,X‖PSQX)

=
1

α− 1
log

(∑
s,x

PS,X(s, x)α

PS(s)α−1QX(x)α−1

)
(18)

≤ 1

α− 1
log

(
eαε
∑
s,x

PS(s)αPX(x)α

PS(s)α−1QX(x)α−1

)
(19)

=
1

α− 1
αε+

1

α− 1
log

(∑
x

PX(x)α

QX(x)α−1

)
(20)

=
α

α− 1
ε+Dα(PX‖QX). (21)

Therefore, since inf
QX

Dα(PX‖QX) = 0 when PX = QX , we

have

ISα(S;X) ≤ α

α− 1
ε+ inf

QX

Dα(PX‖QX) (22)

=
α

α− 1
ε. (23)

By taking α to infinity, we have the maximal leakage
IS∞(S;X) ≤ ε.

For (2), by the assumption, we have

PS|X(s|X)α ≤ eαεPS(s)α ⇒ ‖PS|X(·|X)‖α≤ eε‖PS‖α. (24)

Therefore, we have

IAα (S;X) =
α

α− 1
log

∑
x‖PS|X(·|x)‖αPX(x)

‖PS‖α
(25)

≤ α

α− 1
log

∑
x e

ε‖PS‖αPX(x)

‖PS‖α
(26)

=
α

α− 1
ε. (27)

By taking α to infinity, it follows that IA∞(S;X) ≤ ε and
hence Pc(S|X) ≤ p∗S exp(ε)..

For (3), by the assumption and Jensen’s inequality [26]

If (S;X) , ES∼PS ,X∼PX
[f(l(S,X))] (28)

≥ f(ES∼PS ,X∼PX
[l(S,X)]) (29)

≥ min
e−ε≤t≤eε

f(t), (30)

and If (S;X) ≤ max
e−ε≤t≤eε

f(t). In other words, If (S;X) ∈
[ min
e−ε≤t≤eε

f(t), max
e−ε≤t≤eε

f(t)]. If the convex function f is

specified, the maximization/ minimization in the last inequality
can be easily computed.

C. Proof of Proposition 2
Firs note that into two parts

PS|Y (s|y) =
∑
x∈Xε

PS|X(s|x)PX|Y (x|y)

+
∑
x/∈Xε

PS|X(s|x)PX|Y (x|y).

Also note that by construction we have

PX|Y (x|y) =


1{x=y}, x, y ∈ Xε,
0, x ∈ Xε and y /∈ Xε,
PX(x)
PX(X c

ε ) , x, y /∈ Xε,
0, x /∈ Xε and y ∈ Xε.

(31)

Assuming the ε-lift constraint, we can write

PS|Y (s|y) ≤ eεPS(s)
∑
x∈Xε

PX|Y (x|y)+
PS(s)

PX(X cε )

∑
x/∈Xε

PX|S(x|s),

and thus

PS|Y (s|y)

PS(s)
≤

eε ∑
x∈Xε

PX|Y (x|y) +
1

PX(X cε )

∑
x/∈Xε

PX|S(x|s)

 .
As a very crude bound, we obtain

log
PS|Y (s|y)

PS(s)
≤ log

[
eε +

1

PX(X cε )

]
. (32)

Similarly, for the other direction,

PS|Y (s|y) ≥ PS(s)

PX(X cε )

∑
x/∈Xε

PX|S(x|s)

=
PS(s)

PX(X cε )

[
1−

∑
x∈Xε

PX|S(x|s)

]

≥ PS(s)

PX(X cε )
(1− eεPX(Xε)). (33)

Combining (32) and (33), we have

log

[
1− eεPX(Xε)
PX(X cε )

]
≤ log

PS|Y (s|y)

PS(s)
≤ log

[
1− eεPX(Xε) + eε

PX(X cε )

]
.

Consequently, mechanism PY |X described in (9) satisfies γ-lift
privacy with

γ = max

{
log

[
1− eεPX(Xε) + eε

PX(X cε )

]
,− log

[
1− eεPX(Xε)
PX(X cε )

]}
.



D. Proof of Proposition 3

First, by triangle inequality, for all s ∈ S and x ∈ X

|ĝn(s, x)− g∗(s, x)|
≤ |ĝθ(s, x)− g∗(s, x)|+|ĝn(s, x)− ĝθ(s, x)|, (34)

where ĝθ(s, x) is defined as

ĝθ = argmax
g∈G(Θ)

EPS,X
[g(S,X)]− logEPSPX

[eg(S,X)]. (35)

Since EPS,X
[g(S,X)] is finite, by the universal approximation

theorem [25], there exists a set of parameters θ such that with
probability one

|ĝθ(s, x)− g∗(s, x)|≤ η

2
, ∀s ∈ S, x ∈ X . (36)

Moreover, let the objective function of the extremum
estimator be

Λ(g)n , EPSn,Xn
[g(S,X)]− logEPSnPXn

[eg(S,X)]. (37)

First, since Θ is compact and the mappings represented by
neural networks are continuous, the images G(Θ) is also
compact.

Second, by triangular inequality, for g ∈ G(Θ), we have

|Λ(g)n − (EPS,X
[g(S,X)]− logEpSpX [eg(S,X)])| (38)

≤ sup
g∈G(Θ)

|EPS,X
[g(S,X)]− EPSn,Xn

[g(S,X)]|

+ sup
g∈G(Θ)

|logEPSPX
[g(S,X)]− logEPSnPXn

[g(S,X)]|.

Since the function g is given by a neural network, it can be
uniformly bounded by some constant M , i.e. |g|≤M for all θ,
s and x. Since logarithm is Lipschitz continuous with constant
eM in the interval [e−M , eM ], we have

|logEPSPX
[g(S,X)]− logEPSnPXn

[g(S,X)]|
≤ eM |EPSPX

[g(S,X)]− EPSnPXn
[g(S,X)]|. (39)

Moreover, since G is compact and g is continuous, the functions
g and eg satisfy the uniform law of large numbers [27]. Thus,
Given η > 0, there exists an integer N such that for all n ≥ N
and with probability one,

sup
g∈G(Θ)

|EPS,X
[g(S,X)]− EPSn,Xn

[g(S,X)]|≤ η

2
, and (40)

sup
g∈G(Θ)

|logEPSPX
[g(S,X)]− logEPSnPXn

[g(S,X)]|

≤ η

2
e−M . (41)

Summarizing (38)-(41), we have with probability one

|Λ(g)n − (EPS,X
[g(S,X)]− logEPSPX

[eg(S,X)])|≤ η. (42)

In other words, there exists a limiting function Λ(g)0 =
EPS,X

[g(S,X)] − logEPSPX
[eg(S,X)] such that Λ(g)n con-

verges to Λ(g)0 in probability.
Third, since Λ(g)0 = EPS,X

[g(S,X)]− logEPSPX
[eg(S,X)]

consists of linear combinations (expectations) and continuous
mappings (logarithm and exponential) of the continuous

function g, Λ(g)0 is continuous. Moreover, Λ(g)0 has a unique
optimizer g0 = g∗. By Lemma 2, we know that with probability
one,

|ĝn(s, x)− ĝθ(s, x)|≤ η

2
. (43)

Combining (36) and (43), the desired result follows.

E. Experimental Settings

We construct two neural networks: the first is used to estimate
the conditional probability pS|X , and the second is used as
the log-lift estimator (13). For both neural networks, to avoid
digressing, we adopt vanilla feed-forward architectures with two
fully-connected layers and a readout layer. In the first neural
network, all layers have 128 neurons and ReLU activation
functions, and in the second neural network, all layers have
128 neurons and tanh activation functions. In training both
neural networks, we use AdagradOptimizer with learning
rate 0.001, and run 3000 times with the whole training set.

F. Extreme Samples

Gender Race Age Prior Counts Length of Stay Recidivism
F AA 39 0 57 5
M C 41 5 1 1
F C 31 2 1 1
M C 50 3 11 2
M C 27 2 1 2

TABLE II: Samples with low i(s = 0, x) and high i(s = 1, x)
in Fig. 1. F: Female, M: Male, AA: African American, C:
Caucasian.

Gender Race Age Prior Counts Length of Stay Recidivism
M C 29 0 0 2
M C 45 0 2 2
M C 25 0 1 2
M C 42 1 1 2
M AA 25 3 7 6
F AA 37 3 28 7
M AA 19 2 1 10
M C 56 1 1 1

TABLE III: Samples with i(s = 0, x) ≈ 0 and high i(s = 1, x)
in Fig. 1. F: Female, M: Male, AA: African American, C:
Caucasian.

Gender Race Age Prior Counts Length of Stay Recidivism
M C 25 1 42 3
M AA 53 11 110 6
M AA 23 4 31 10
M C 48 0 68 8

TABLE IV: Samples with i(s = 1, x) ≈ 0 and high i(s = 0, x)
in Fig. 1. F: Female, M: Male, AA: African American, C:
Caucasian.


