Discovering Information-Leaking Samples and Features

Hsiang Hsu, Shahab Asoodeh, and Flavio P. Calmon

HARVARD School of Engineering and Applied Sciences

John A. Paulson School of Engineering and Applied Science, Harvard University

Background

- Given a target set of private attributes, samples and features within a dataset \Rightarrow leak different levels of private information
 - Not all Tweets equally reveal a users political preference
 - Not all pixels in face images equally disclose emotion
- A natural, yet mostly overlooked, first step in designing context-aware privacy mechanisms
 - Information-theoretic privacy, e.g., the privacy funnel
 - Generative Adversarial Privacy (GAP)
- Compared with uniformly adding perturbations \Rightarrow Utility \uparrow and interpretability \uparrow
- Discovering samples or features which leak information about correlated private data

Information Density

- An information-theoretic quantity \Rightarrow Sample-wise non-linear correlation measure
- Known as Point Mutual Information (PMI) in NLP literature
- Setup:
 - A dataset $\mathcal{D} = \{(\mathbf{s}_n, \mathbf{x}_n)\}_{n=1}^N$, drawn i.i.d. from $P_{S,X}$
 - $\mathbf{s}_n \in \mathcal{S} = \mathbb{R}^m$: the n^{th} private attribute (e.g. binary emotion labels)
 - $\mathbf{x}_n \in \mathcal{X} = \mathbb{R}^k$: data sample (e.g. a face image)
 - \mathbf{x}_n^j : the j^{th} feature (i.e., coordinate) of \mathbf{x}_n ($j \in \{1, \dots, k\}$)
- Definition:

The information density of the n^{th} sample

 $i(\mathbf{s}_n; \mathbf{x}_n) \triangleq \log \frac{P_{S,X}(\mathbf{s}_n; \mathbf{x}_n)}{P_S(\mathbf{s}_n) P_X(\mathbf{x}_n)} = \log \frac{P_{S|X}(\mathbf{s}_n | \mathbf{x}_n)}{P_S(\mathbf{s}_n)}$

Thresholded Information Density Estimator

- $i(\mathbf{s}_n; \mathbf{x}_n)$ is unbounded \Rightarrow estimating the information density from samples is hard in sample complexity
- Plug-in estimators perform poorly unless adequate parametric models are assumed (e.g., linear, kernel, or exponential family models)
- No need to precisely estimate information density in our privacy setup
- \Rightarrow Only need to know which samples or features have $|i(\mathbf{s}_n; \mathbf{x}_n)|$ higher than a given threshold ϵ
- \Rightarrow A much easier estimation problem: thresholded information density estimation
- Variational representation of f-divergences
 - f: a convex function with f(1) = 0, $f^*(t) \triangleq \sup_{x \in \mathbb{R}} \{xt f(t)\}$: the Fenchel convex conjugate of f

-
$$D_f(P \| Q) \triangleq \mathbb{E}_Q f\left(\frac{P}{Q}\right) = \sup_{g: \mathcal{X} \to \mathbb{R}} \mathbb{E}_P[g(X)] - \mathbb{E}_Q[f^*(g(X))] \Rightarrow g^* = \partial f(\frac{P}{Q})$$

- Donsker-Varadhan (DV) representation of KL Divergence ($f(t) = t \log t$)
 - $I(S;X) = D(P_{S,X} || P_S P_X) = \sup_{g: \mathcal{S} \times \mathcal{X} \to \mathbb{R}} \mathbb{E}_{P_{S,X}}[g(S,X)] \log \mathbb{E}_{P_S P_X}[e^{g(S,X)}] \Rightarrow g^*(s,x) = i(s;x)$
 - Estimating information density is equivalent to solving the functional optimization problem
 - Search space in is unconstrained \Rightarrow unsolvable
- Thresholded Information Density Estimator (TIDE)
 - **Restricted** g to $\mathcal{G}(\Theta)$: continuous functions g_{θ}

Bounded by MParameterized by θ in a compact domain $\Theta \subset \mathbb{R}^d$

- TIDE: $\hat{g}_n(s, x) = \operatorname{argmax}_{g_\theta \in \mathcal{G}(\Theta)} \mathbb{E}_{P_{S_n, X_n}}[g_\theta(S, X)] \log \mathbb{E}_{P_{S_n} P_{X_n}}[e^{g_\theta(S, X)}]$
- Consistency
 - TIDE: extremum estimators of the form $\hat{a} = \operatorname{argmax}_{a \in \mathcal{A}} \Lambda_n(a)$
 - $\Lambda_n(a)$: objective function, \mathcal{A} : parameter space
 - Newey-McFadden Lemma \Rightarrow Consistency of extremum estimators \Rightarrow Consistency of TIDE - (i) compact \mathcal{A} (ii) $\exists \Lambda(a)$ such that $\Lambda_n(a) \xrightarrow{p} \Lambda(a)$ (iii) $\Lambda(a)$ is continuous with unique maximum

The information density of the *j*th feature of the *n*th sample $i(\mathbf{s}_n; \mathbf{x}_n^j) \triangleq \log \frac{P_{S,X}(\mathbf{s}_n; \mathbf{x}_n^j)}{P_S(\mathbf{s}_n)P_X(\mathbf{x}_n^j)} = \log \frac{P_{S|X}(\mathbf{s}_n|\mathbf{x}_n^j)}{P_S(\mathbf{s}_n)}$

- $|i(\mathbf{s}_n;\mathbf{x}_n)|$ evaluates the change of belief about \mathbf{s}_n upon observing \mathbf{x}_n
 - $\mathbf{s}_n \perp \mathbf{x}_n \Rightarrow P_{S,X}(\mathbf{s}_n; \mathbf{x}_n) \approx P_S(\mathbf{s}_n) P_X(\mathbf{x}_n) \Rightarrow |i(\mathbf{s}_n; \mathbf{x}_n)| \approx 0$
 - \mathbf{s}_n and \mathbf{x}_n are highly correlated $\Rightarrow |i(\mathbf{s}_n; \mathbf{x}_n)|$ bounded away from 0
 - A score for identifying information-leaking samples and features
- Widely used in outlier detection, transfer learning, generative adversarial nets, etc.
- The expected information density is equal to the mutual information, i.e., $\mathbb{E}_{P_{S,X}}i(S;X) = I(S;X)$
- Sample Complexity
 - Assuming g is L-Lipschitz with respect to θ , $|\Theta| \leq C$

$$- n = O(\frac{M^2 d(\log(LC) - \log \eta + M)}{\eta^2}) \Rightarrow \text{ for all } s, x, \Pr\{|\hat{g}_n(s, x) - g^*(s, x)| \le \eta\} \ge 1 - e^{-M}$$

- Implementation
 - Consider functions representable by a feed-forward deep neural network (clipping outputs to [-M, M])
 - Outputs the thresholded information density of samples $|i(\mathbf{s}_n; \mathbf{x}_n)| \le M$ and of features $|i(\mathbf{s}_n; \mathbf{x}_n^j)| \le M$

- Term frequency and bag-of-words \asymp (BoW) model $\Rightarrow 24657$ terms
- I(S; X) = 0.645 bits
- Right-wing politics: "Grand Old Party", "National Rifle Association"
- Left-wing politics: "Europe", "liberal(s)"

-1.25	Grant Stern Politically-charged terms in right-wing Tweets Politically-charged terms in left-wing Tweets					
-1.50	 Other terms in tweets 			Brian Tyler Cohen		
	-2.0	-1.5	-1.0	-0.5	0.0	0.5
$i(S = 0, X = \mathbf{x}_n^j) = \log \frac{\rho_{S X}(0 \mathbf{x}_n^j)}{\rho_S(0)}$						

Selected Reference

• S. Liu, A. Takeda, T. Suzuki, and K. Fukumizu, Trimmed density ratio estimation, in Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2017.

i(S

- Y. Polyanskiy, H. V. Poor, and S. Verdú, Channel coding rate in the finite blocklength regime, IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 23072359, 2010.
- M. Sugiyama, T. Suzuki, and T. Kanamori, Density ratio estimation in machine learning. Cambridge University Press, 2012.
- X. Nguyen, M. J. Wainwright, and M. I. Jordan, Estimating divergence functionals and the likelihood ratio by convex risk minimization, IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 58475861, 2010.
- I. Belghazi, S. Rajeswar, A. Baratin, R. D. Hjelm, and A. Courville, MINE: mutual information neural estimation, arXiv preprint arXiv:1801.04062, 2018.
- W. K. Newey and D. McFadden, Large sample estimation and hypothesis testing, Handbook of econometrics, vol. 4, pp. 21112245, 1994.

Remarks

- Limitation two key assumptions
 - Knowing *a priori* private attributes that we wish to hide (e.g., political preference)
 - A reference dataset from which we can train machine learning models
- Future Directions
 - Privacy-assuring mechanisms beyond the indiscriminate (uniform) addition of noise
 - Optimal perturbations or randomization based on the TIDE

Contact

Extended Abstract

Extended Paper

