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Background Thresholded Information Density Estimator
e Given a target set of private attributes, samples and features within a dataset e i(s,;X,) is unbounded
= leak different levels of private information = estimating the information density from samples is hard in sample complexity
— Not all Tweets equally reveal a users political preference e Plug-in estimators perform poorly unless adequate parametric models are assumed (e.g., linear, kernel, or

— Not all pixels in face images equally disclose emotion exponential family models)

e No need to precisely estimate information density in our privacy setup

e A natural, yet mostly overlooked, first step in designing context-aware privacy mechanisms — Only need to know which samples or features have |i(s,: x,,)| higher than a given threshold ¢

— Information-theoretic privacy, e.g., the privacy funnel = A much easier estimation problem: thresholded information density estimation

— Generative Adversarial Privacy (GAP) e Variational representation of f-divergences
e Compared with uniformly adding perturbations =- Utility 1 and interpretability 1 — f:aconvex function with f(1) =0, f*(t) = sup,cg{zt — f(t)}: the Fenchel convex conjugate of f
e Discovering samples or features which leak information about correlated private data — Dy(P||Q) £ Eqf (g) = sup,. v g Ep[9(X)] — Eq[f*(9(X))] = g* = 8f(g)

e Donsker-Varadhan (DV) representation of KL Divergence (f(t) = tlogt)

Information Densit
y - I(S7 X) — D(PS,X”PSPX) = SUPg.sx xR EPS,X [9(87 X)] - 1OgEPsPX [eg(S,X)] = g*(87x) — i(S; ZIZ)

e An information-theoretic quantity =- Sample-wise non-linear correlation measure — Estimating information density is equivalent to solving the functional optimization problem
e Known as Point Mutual Information (PMI) in NLP literature — Search space in is unconstrained = unsolvable
o Setup: e Thresholded Information Density Estimator (TIDE)

— Adataset D = {(s,,,x,)}
— s, € S = R™: the n'" private attribute (e.g. binary emotion labels)

Bounded by M
Parameterized by 6 in a compact domain © c R4

drawn i.i.d. from Pg x

n=1"

— Restricted ¢ to G(©): continuous functions gy {

- x,, € X = RF: data sample (e.g. a face image) — TIDE: §,,(s,z) = argmax,, o) Eps, ., [90(S, X)] —logEp, py. [ege(S,X)]
— xJ : the ;" feature (i.e., coordinate) of x,, (j € {1,...,k}) e Consistency
e Definition: — TIDE: extremum estimators of the form & = argmax, 4 A, (a)
The informition density (s %) 2 log Ps,x (Sn3Xn) _ log Pg|x (sn|xn) — A, (a): objective function, A: parameter space
of the n™ sample Ps(sn) Px (%) Ps(sn) — Newey-McFadden Lemma = Consistency of extremum estimators = Consistency of TIDE
Tnhe information dertlhsity i(sn:%7) 2 log Ps x (8n; x%) ~log Pgx (sn|x7,) — (i) compact A (i) 3A(a) such that A, (a) 2 A(a) (i) A(a) is continuous with unique maximum
of the j™ feature of the n' sample Ps(s,)Px (x1) Ps(sn)

e Sample Complexity

e |i(s,;x,)| evaluates the change of belief about s,, upon observing x,, — Assuming g is L-Lipschitz with respect to 0, |9 < C
O( M?d(log(LC)—logn+M) )

— s, L X, = Ps x(sn;Xpn) = Ps(s,)Px(xp) = |i(sp;xn)| = 0 )
g

- n= = for all s, z, Pr{|g.(s,2) —g*(s,2)| <n} >1—eM

— s, and x,, are highly correlated = |i(s,; x,, )| bounded away from 0 _
: e : . e Implementation
— A score for identifying information-leaking samples and features

— Consider functions representable by a feed-forward deep neural network (clipping outputs to [— M, ])

Widely used in outlier detection, transfer learning, generative adversarial nets, etc. _ _ _ , _
Y %9 — Outputs the thresholded information density of samples |i(s,; x,,)| < M and of features |i(s,;x’)| <

The expected information density is equal to the mutual information, i.e., Ep, ,i(5; X) = I(S; X)

Experiments and Discussions
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e GENKI-4k Smiling Dataset

— 2400 images for training and 600 for testing Original Images

1 if similing

0 otherwise Information-leaking score
_ TIDE (VGG-16 CNN) achieves I(S: X) = 0.594 bits information density i(sn;x;,)
— Image features: 2 x 2-pixel patches

— X, 64 x 64-pixels face images, s,, = {

Adding local Gaussian noise to

— Hide the private information of emotion e .
patches with i(s,;x7) > 0.9

— Preserving other useful information irrelevant of smiling, e.g., gender

Sample Features Adding indiscriminate Gaussian [

Xn, noise to the image sample

E I | * e Celebrity Attributes (CelebA) Dataset
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— 202599 high-resolution images — TIDE (VGG-16 CNN) achieves I(S; X) = 0.967 bits
_ , , — X, 218 x 178-pixel celebrity faces — : -pi
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