



## **Correspondence Analysis Using Neural Networks**

Hsiang Hsu<sup>1</sup>, Salman Salamatian<sup>2</sup> and Flavio P. Calmon<sup>1</sup> <sup>1</sup>School of Engineering and Applied Science, Harvard University

<sup>2</sup>Research Laboratory of Electronics, Massachusetts Institute of Technology



| <ul> <li>Extracting correlation/ correspondence in data is at the core of machine learning and data science</li> </ul>                                                                                                             |                                                                       | Principal Inertia Components (PICs)                                                                                                                                                                                    |                                                                  |                                 |                                                                                 |                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|-------------------------------------|--|
|                                                                                                                                                                                                                                    |                                                                       | <ul> <li>Starting from</li> </ul>                                                                                                                                                                                      | n Maximal Correlation                                            | If $f$ and $g$                  | If $f$ and $g$ are linear functions: CCA                                        |                                     |  |
| Traditional machine learning:                                                                                                                                                                                                      |                                                                       | max                                                                                                                                                                                                                    | $\mathbb{E}[f(X)a(Y)]$                                           | N                               | Aximal Correlation $(\mathbf{Y}; \mathbf{Y}) = \sqrt{2}$                        |                                     |  |
| <ul> <li>PCA/ Canonical Correlation Analysis (CCA): restricted to single variable, hard to find non-linear relation</li> <li>Kernel methods (e.g. kernel PCA, kernel CCA): restricted to the pre-selected kernel family</li> </ul> |                                                                       | subject to                                                                                                                                                                                                             | $\mathbb{E}[f(X)g(Y)]$ $\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$ | _                               | $= \rho_m(\Lambda; Y) = \sqrt{\lambda_1} = \sqrt{\lambda_2} = \sqrt{\lambda_3}$ |                                     |  |
| <ul> <li>Modern machine learning: Variational Auto-Encoder, non-linear embedding, etc.</li> </ul>                                                                                                                                  | Which functions of a hidden                                           |                                                                                                                                                                                                                        | $  f(X)  _2 =   g(Y)  _2 = 1$                                    | N                               | Aaximizing function                                                             | s: $f_1(X)$ and $g_1(Y)$            |  |
| - Suffering from entanglement between representations                                                                                                                                                                              | variable can be estimated                                             |                                                                                                                                                                                                                        | $\mathbb{E}[f(X)f_1(X)] = \mathbb{E}[g(Y)$                       | $[g_1(Y)] = 0$ N                | Aaximizing function                                                             | s: $f_2(X)$ and $g_2(Y)$            |  |
| <ul> <li>Hard to visualize, interpret</li> </ul>                                                                                                                                                                                   | with small mean-squared error?<br>min mmse $(f(X) Y) = 1 - \lambda_i$ |                                                                                                                                                                                                                        | $\mathbb{E}[f(X)f_2(X)] = \mathbb{E}[g(Y)$                       | $[g_2(Y)] = 0$ N                | Aaximizing function                                                             | is: $f_3(X)$ and $g_3(Y)$           |  |
| <ul> <li>Let's revisit an exploratory multivariate statistical tool: Correspondence Analysis</li> </ul>                                                                                                                            | s.t. $\mathbb{E}[f(X)] = 0$                                           |                                                                                                                                                                                                                        | ··· And so forth.                                                |                                 |                                                                                 |                                     |  |
| <b>Correspondence Analysis (CA)</b><br>$\frac{\ f(X)\ _2 = 1}{\mathbb{E}[f(X)f_1(X)] = 0}$                                                                                                                                         |                                                                       | • The principal functions are in the Hilbert space of finite-variance functions                                                                                                                                        |                                                                  |                                 |                                                                                 |                                     |  |
| <ul> <li>Similar to PCA, Canonical Correlation Analysis (CCA), but</li> </ul>                                                                                                                                                      |                                                                       | • The principal functions are low-dimensional orthogonal (disentangled) representations of data<br>• Reconstitution Formula: Decomposition of a joint distribution. Let $d = \min\{ \mathcal{X} ,  \mathcal{Y} \} - 1$ |                                                                  |                                 |                                                                                 |                                     |  |
| <ul> <li>Produces low-dimensional representation of data that captures non-linear relationships</li> <li>Enables visualization and interpretability</li> </ul>                                                                     | $\mathbb{E}[f(X)f_{i-1}(X)] = 0$<br>Maximizing function: $f_i(X)$     |                                                                                                                                                                                                                        |                                                                  |                                 |                                                                                 |                                     |  |
| <ul> <li>Widely used in Genealogy, Epidemiology, Social and Environmental Sciences (see Selected F</li> </ul>                                                                                                                      | Reference)                                                            |                                                                                                                                                                                                                        | $p_{X,Y}(x,y) = p$                                               | $p_X(x)p_Y(y)\left(1+\right)$   | $-\sum_{I=1}\sqrt{\lambda_i f_i(x)g_i(y)}$                                      | )                                   |  |
| • Consider two random variables X and Y with their joint probability $p_{X,Y}$ and supports $\mathcal{X} = [n]$ , $\mathcal{Y} = [m]$                                                                                              |                                                                       | <ul> <li>PICs for Discrete Distributions: Proposition 2</li> </ul>                                                                                                                                                     |                                                                  |                                 |                                                                                 |                                     |  |
| Contingency Table $\int \frac{p_{X,Y}(1,1) - p_X(1)p_Y(1)}{\sqrt{p_X(1)p_Y(1)}} \cdots \frac{p_{X,Y}(1,m) - p_X(1)p_Y(m)}{\sqrt{p_X(1)p_Y(m)}}$                                                                                    |                                                                       | Pri                                                                                                                                                                                                                    | incipal Functions $f_1, f_2, \cdots$                             | Principal Fur $g_1, g_2, \cdot$ | nctions<br>                                                                     | PICs $\lambda_1, \lambda_2, \cdots$ |  |



- 2. Reliably estimation of the contingency table (approximation of  $p_{X,Y}$ ) may be infeasible due to limited number of samples
- 3. Not scalable for high-dimensional data

where  $\mathbf{C}_f = \mathbb{E}[\tilde{\mathbf{f}}(X)\tilde{\mathbf{f}}(X)^{\intercal}]$ ,  $\mathbf{C}_{fg} = \mathbb{E}[\tilde{\mathbf{f}}(X)\tilde{\mathbf{g}}(Y)^{\intercal}]$ , and  $\|\mathbf{Z}\|_d$  is the *d*-th Ky-Fan norm, defined as the sum of the singular values of Z. Denoting by A and B the whitening matrices for  $\tilde{f}(X)$  and  $\tilde{g}(X)$ , the principal functions are given by  $f(X) = [f_0(X), \dots, f_d(X)]^{\intercal} = Af(X)$  and  $g(Y) = [g_0(Y), \dots, g_d(Y)]^{\intercal} = B\tilde{g}(Y)$ .



