
• Correspondence analysis at an unprecedented scale (50k colored images with 32⇥ 32 pixels)
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Figure 6: CA-style plots using the first three principal functions of CIFAR-10.

(a) Decomposition of models trained on COMPAS dataset. (b) Acc ratio.

Figure 7: Analysis of different models trained on the COMPAS dataset.

and three models trained on the data to predict recidivism from X, namely random forest (RF),
logistic regression (LR), and a simple neural network (NN). We note that the COMPAS algorithm is
a “black box” — we do not have direct access to the underlying classifier.

For each model, we quantized the decile scores, which are integers from 0 to 9 indicating the
likelihood of recidivism, into three classes: “low” (0 to 2), “medium” (3 to 6) and “high” (7 to 9),
correspoding to the variable Y (m = 3). Quantization was chosen to assure that the four models
output similar distributions over the three classes. The principal functions fi(X) extracted from the
model are displayed in Fig. 7a. The greater “spread” of the points observed in the COMPAS dataset
may be due to the fact that the COMPAS prediction instrument uses input factors that are not
available in the dataset.

In Fig. 7b, we show the Acc ratio defined in (3), with p
(1)
Y |X on the vertical axis p

(2)
Y |X on the

horizontal axis. When p
(1)
Y |X and p

(2)
Y |X are given by the same model, the Acc ratio is 1. We can

observe that when p
(1)
Y |X is the COMPAS algorithm, the Acc ratio are small, indicating there are

functions of Y that can be more accurately estimated by an RF, LR, or NN model, than by COMPAS
algorithm. In other words, the COMPAS model appears to be a more “noisy channel”. Moreover,
when comparing the three models RF, LR and NN models, the NN has largest Acc ratios, meaning
the NN is able to express more functions of Y that can be accurately estimated.

6 Final Remarks

We discussed a theoretical framework for analyzing finite-variance representations based on the PICs.
This framework underlies not only classical statistical techniques such as ACE and CA, but recent
multi-view representation learning methods such as DCCA. The PIC-based analysis is not limited
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Correspondence Analysis Neural Net (CA-NN)

Principal Inertia Components (PICs)

Correspondence Analysis (CA)
• Similar to PCA, Canonical Correlation Analysis (CCA), but

– Produces low-dimensional representation of data that captures non-linear relationships
– Enables visualization and interpretability

• Widely used in Genealogy, Epidemiology, Social and Environmental Sciences (see Selected Reference)

• Consider two random variables X and Y with their joint probability pX,Y and supports X = [n], Y = [m]
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• Extracting correlation/ correspondence in data is at the core of machine learning and data science

• Traditional machine learning:

– PCA/ Canonical Correlation Analysis (CCA): restricted to single variable, hard to find non-linear relation
– Kernel methods (e.g. kernel PCA, kernel CCA): restricted to the pre-selected kernel family

• Modern machine learning: Variational Auto-Encoder, non-linear embedding, etc.

– Suffering from entanglement between representations
– Hard to visualize, interpret

• Let’s revisit an exploratory multivariate statistical tool: Correspondence Analysis

• Starting from Maximal Correlation
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· · · And so forth.

Maximal Correlation
If f and g are linear functions: CCA

f1, f2, · · · and g1, g2, · · · are Principal Functions �1,�2, · · · are Principal Inertia Components

• Reconstitution Formula: Decomposition of a joint distribution. Let d = min{|X |, |Y|}� 1
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• PICs for Discrete Distributions: Proposition 2

• Singular Value Decomposition:
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• The principal functions are low-dimensional orthogonal (disentangled) representations of data
• The principal functions are in the Hilbert space of finite-variance functions

• Searching the whole Hilbert space for f and g is infeasible

• Restricted to functions representable by neural nets

Proposition 3: The PIC Loss is given by

min
f̃,g̃

�2kC� 1
2

f Cfgkd + E[kg̃(Y )k22],

where Cf = E[̃f(X )̃f(X)|], Cfg = E[̃f(X)g̃(Y )|], and kZkd is the d-th Ky-Fan norm, defined as the sum
of the singular values of Z. Denoting by A and B the whitening matrices for f̃(X) and g̃(X), the principal
functions are given by f(X) = [f0(X), · · · , fd(X)]| = Ãf(X) and g(Y ) = [g0(Y ), · · · , gd(Y )]| = Bg̃(Y ).
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Image Dataset – CIFAR-10

UCI Wine Quality Dataset

Kaggle Food Recipe Dataset
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Selected Reference

Discrete PICs

CA-NN 0.8011 0.7942 0.7918 0.7883
Analytic value 0.8000 0.8000 0.8000 0.8000

Gaussian PICs

CA-NN 0.7007 0.4938 0.3376 0.2037
Analytic value 0.6977 0.4675 0.2979 0.2113

• Analytical solutions of principal functions are in general hard

• Discrete case (Binary Symmetric Channel):

• Continuous case (Gaussian):

X ⇠ Bernoulli(p)
Z ⇠ Bernoulli(�)

Y = X � Z

X, Y jointly Gaussian
Principal Functions:
Hermite polynomials

Hi(x) , (�1)Ie
x2

2
dI

dxI e
� x2
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CA-NN

Top ten PICs Correlations
CA-NN SVD CCA KCCA
0.9092 0.4504 0.1915 0.6585
0.8667 0.3894 0.1751 0.1223
0.8412 0.3149 0.1342 0.0860
0.7932 0.2943 0.1083 0.0636
0.7391 0.2413 0.1050 0.0320
0.6413 0.1958 0.0823 0.0131
0.6018 0.1547 0.0623 0.0090
0.4792 0.1191 0.0488 0.0089
0.4508 0.1146 0.0485 0.0051
0.2821 0.1035 0.0431 0.0011

• X: 39774 recipes, 6714 ingredients
(e.g. peanuts, sesame, beef, etc.)

• Y : 20 types of cuisines
(e.g. Japanese, Greek, Jamaican , etc.)

• Clusters: Asian v.s. Western

• First principal function:
Asian v.s. Rest

• Second principal function:
Mexican v.s. Rest

• Signature ingredients
for different cuisines

• 3 sub-clusters of qualities, not 6

• 2 hidden orthogonal factors, not 11 attributes

• Interpolation: From bad wine to good wine

• X: 4898 red wines with
11 physico-chemical attributes
(e.g. pH value, acid, alcohol, etc.)

• Y : 6 levels of qualities (2-7)

• Continuous-valued attributes: SVD fails
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