Correspondence Analysis of Government Expenditure Patterns

Hsiang Hsu¹, Flavio P. Calmon¹, José Cândido Silveira Santos Filho¹, Andre P. Calmon², Salman Salamatian³

¹School of Engineering and Applied Science, Harvard University

²Technology and Operations Management, INSEAD

³Research Laboratory of Electronics, Massachusetts Institute of Technology

Background

- Open data trend in executive and legislative branches of governments: transparency \uparrow , corruption \downarrow , and democratic institutions \uparrow
- Machine learning to quantify, model, and evaluate the performance of public administration
- An active area of research in social/political science: Public Expenditure Analysis (PEA)
- Why Brazil?
 - Brazilian government has a large open data initiative: untouched by Advanced ML!
 - High-profile budget misuse problems: > 30% of congress members under investigation!
- Goal: Introducing a neural network-based method to analyze expenditure patterns

Data Description

- Operation Serenata de Amor: Discretionary expenditure by Brazilian Congress members
- Made available by Brazil government
- 513 Congress members/ 26 states/ > 30 parties in Brazil
- > 7 million expenditure records from 2009 to 2018
- Monthly budgets: BRL\$ 45k (≈USD\$ 13k)
- Data pre-processing
 - Translation: Portuguese ⇒ English
 - Most recent term: 2015 2018
 - Dropped missing data/ eliminated categories appearing less than 500 times.
 - 1.1 million records/ 16 categories/ 595 congress members/ 26 parties/ 27 states

Congress Member ID		State	Party	Category	vendor	Value
213	2015	RR	DEM	Maintenance of office	COMPANHIA DE AGUAS E ESGOTOS DE RORAIMA	BRL\$ 165.65
452	2015	RR	DEM	Fuel and lubricants	CASCOL COMBUSTIVEIS PARA VEICULOS LTDA	BRL\$ 40
97	2015	CE	PODE	Food for the congressperson	BOI ZANGADO_FRANCISCA DE SENA VASCONCELOS - ME	BRL\$ 52.4
X	Data samples in Operation Serenata de Amor					Y

Methodology

Correspondence Analysis (CA)

- An exploratory multivariate statistical technique ⇒ used in genealogy, epidemiology, social and environmental sciences
- Similar to PCA/CCA: Low-dimensional orthogonal representations ⇒ visualization/ interpretability
- Consider two random variables X and Y of finite cardinality
 - $\mathbf{Q} \triangleq \mathbf{D}_{\mathbf{X}}^{-1/2}(\mathbf{P}_{\mathbf{X},\mathbf{Y}} \mathbf{p}_{\mathbf{X}}\mathbf{p}_{\mathbf{Y}}^{\mathsf{T}})\mathbf{D}_{\mathbf{Y}}^{-1/2}, \ \mathbf{D}_{\mathbf{X}} \triangleq \mathrm{diag}(\mathbf{p}_{\mathbf{X}}), \mathbf{D}_{\mathbf{Y}} \triangleq \mathrm{diag}(\mathbf{p}_{\mathbf{Y}})$ = **UZV**^T (Singular Value Decomposition)
- d = min $\{|\mathcal{X}|, |\mathcal{Y}|\}$ 1, $\{\sigma_i\}_{i=1}^d$: the singular values
 - Orthogonal factors of X: $\mathbf{L} \triangleq \mathbf{D}_{\mathbf{X}}^{-1/2}\mathbf{U}$
- Factor scores: $\lambda_i = \sigma_i^2$, $1 \le i \le d$
- Orthogonal factors of Y: $\mathbf{R} \triangleq \mathbf{D}_{\mathbf{Y}}^{-1/2}\mathbf{V}$
- Factor score ratios: $\frac{\lambda_i}{\sum_{i=1}^{j} \lambda_i}$, $1 \le i \le d$
- The first and second columns of L and R plotted on a 2-D plane: factoring plane
- Limitations of SVD-based CA: restricted to categorical data and requires estimating P_{X,Y}

• A novel neural network-based approach for CA:

- $-\tilde{\mathbf{f}}(\mathsf{X}) \triangleq [\tilde{\mathsf{f}}_1(\mathsf{X}), \cdots, \tilde{\mathsf{f}}_\mathsf{d}(\mathsf{X})]^\intercal \in \mathbb{R}^{\mathsf{d} \times 1}, \text{ and } \tilde{\mathbf{g}}(\mathsf{Y}) \triangleq [\tilde{\mathsf{g}}_1(\mathsf{Y}), \cdots, \tilde{\mathsf{g}}_\mathsf{d}(\mathsf{Y})]^\intercal \in \mathbb{R}^{\mathsf{d} \times 1}$
- $\mathbf{C}_f = \mathbb{E}[\tilde{\mathbf{f}}(X)\tilde{\mathbf{f}}(X)^\intercal], \ \mathbf{C}_{fg} = \mathbb{E}[\tilde{\mathbf{f}}(X)\tilde{\mathbf{g}}(Y)^\intercal], \ \|\mathbf{Z}\|_d \colon d\text{-th Ky-Fan norm}$
- Loss Function for back-propagation: $\min_{\tilde{g}} -2\|\mathbf{C}_f^{-\frac{1}{2}}\mathbf{C}_{fg}\|_d + \mathbb{E}[\|\tilde{\mathbf{g}}(\mathbf{Y})\|_2^2]$
- $-\tilde{\mathbf{f}}(X)$ and $\tilde{\mathbf{g}}(Y)$: generalizations of L and R

The architecture of the CA-NN, consisting of two encoders F-Net and G-Net for X and Y respectively to estimate the orthogonal factors.

Main Results and Discussions

• Expenditure Pattern

- Automatically clusters related expenses together since they have close patterns. Aviation-related expenses: "Airline Ticket Issue", "Rental of aircrafts" Transportation-related expenses: "River transport tickets", "Rental of motor vehicles" Daily expenses: "Food", "Fuel", "Security services"
- Certain categories not correlated with congress members: "Food", "Fuel and lubricants", "River transport tickets", "Rental of motor vehicles", "Security services", and "Taxi services" and parking".
- High-variation, overlapping traces of "Publication subscription" and "Postal service", and "Airline tickets", "Consulting, research, and technical activities" and "Disclosure and advertisement of parliamentary activity": mishandling of this category by certain congress members
- "Maintenance of an office" and "Lodging": outlying patterns

Charged Congress members

- Investigated congress members near expenditure patterns with large variation
- Ongoing work: Discretionary funding may be predictive of budget misuse problems

Potential Use Cases

- Anomalous expenditure discovery, interpretation and visualization
- Clustering of congress members in terms of their discretionary expenditure pattern
- Algorithmic watchdogs for predictive models of budget misuse: proactive reactions

• New methodological approaches transferable to other civic projects for government transparency

Selected Reference

- Bates, J. (2012). this is what modern deregulation looks like: co-optation and contestation in the shaping of the UK open government data initiative. The Journal of Community Informatics, 8(2).
- Shah, A. (2005). Public Expenditure Analysis. The World Bank.
- Winter, B. (2017). Brazils never-ending corruption crisis: Why radical transparency is the only fix. Foreign Aff., 96:87.
- Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London Academic Press.
- Hsu, H., Salamatian, S., and Calmon, F. P. (2018). Deep orthogonal representations: Fundamental properties and applications. arXiv preprint arXiv:1806.08449.

Contact

Hsiang Hsu Paper

GitHub and Data Release

Second Orthogonal

• First factoring plane of the expenditures of 595 congress members in Brazil from 2015 to 2018

 $(\tilde{f}_1(x_i), \tilde{f}_2(x_i)), \text{ and } (\tilde{g}_1(y_i), \tilde{g}_2(y_i)), \forall i$

- Higher factor score ratio: more correlation captured by the orthogonal factor
- Colored traces: 16 expenditure patterns for all congress members
- Grey dots: congress members without investigations
- Red dots: congress members under investigations
- Points and lines close to the center (the origin): small correlation.